• 제목/요약/키워드: Drug-delivery

검색결과 1,135건 처리시간 0.025초

메톡시 폴리(에틸렌 글리콜)-폴리($\varepsilon$-카프로락톤) 공중합체의 온도감응성 솔-젤 전이 거동 (Thermosensitive Sol-gel Phase Transition Behavior of Methoxy poly(ethylene glycol)-b-poly($\varepsilon$-caprolactone) Diblock Copolymers)

  • 서광수;박종수;김문석;조선행;이해방;강길선
    • 폴리머
    • /
    • 제28권4호
    • /
    • pp.344-351
    • /
    • 2004
  • 온도에 반응하는 고분자로서 폴리(에틸렌 글리콜)을 기본으로 다이블록 및 트리블록 폴리에스테르 공중합체들은 비독성과 생체적합성 그러고 생분해성 특징 때문에 주사제형의 약물전달체로서 많은 응용이 이루어지고 있다. 본 연구에서는 다이블록 공중합체를 이용한 새로운 솔-젤 전이 현상을 갖는 고분자를 준비하고자, 평균분자량 750g/mole의 메톡시 폴리(에틸렌 글리콜)과 카프로락톤을 실온에서 HCI $.$ Et$_2$O 존재 하에서 개환중합을 실시하였다. 합성된 고분자는 시차주사열량계와 X-선 회절기를 이용하여 특성을 분석하였고, 수용액상에서의 고분자 용액은 실온에서 신체온도로 온도를 상승시키면 졸에서 겔 상으로의 상변화를 보였다. 신체온도 부근에서의 겔 형성을 확인하기 위하여 20 W% 졸 상태의 고분자용액을 쥐의 피하에 주입한 결과 분산 없이 겔이 잘 형성되었고 2개월 간 겔이 유지됨을 확인하였다. 이러한 연구 결과로, 새로운 솔-젤 상전이 현상을 보이는 다이블록 공중합체를 합성하였고, 주사형 이식 재료로의 가능성을 확인하였다.

PCL 기반 생분해성 분자 날인 고분자의 광중합 및 물성 (Photopolymerization and Properties of PCL-Based Biodegradable Molecularly Imprinted Polymers)

  • 김선희;이경수;김용훈;최우진;김범수;김응국;김대수
    • 폴리머
    • /
    • 제31권2호
    • /
    • pp.153-159
    • /
    • 2007
  • 생분해성 분자 날인 고분자는 바이오센서 약물 전달 등의 생의학적 분야에 적응이 가능하다. 그러므로, 본 연구에서는 생분해성 고분자인 $poly(\varepsilon-caprolactone)$ (PCL) 매크로머를 가교제로 사용하여 theophylline 분자 날인 고분자를 광중합을 통해 제조하고 물성을 조사하였다. PCL 매크로머는 말단에 아크릴기를 갖도록 합성하였으며 FT-IR과 $^1H-NMR$로 확인하였다. PCL 매크로머의 합성수율은 약 78 mol%였다. Theophylline의 제거 및 재결합 실험은 UV/Vis분광기를 이용하여 용액 내 theophylline의 농도를 확인함으로써 이루어졌다. Theophylline분자 날인 고분자의 생분해성 실험을 $37^{\circ}C$의 PBS 용액 내에서 진행한 결과 우수한 생분해성을 보였다.

pH-Sensitivity Control of PEG-Poly(${\beta}$-amino ester) Block Copolymer Micelle

  • Hwang, Su-Jong;Kim, Min-Sang;Han, Jong-Kwon;Lee, Doo-Sung;Kim, Bong-Sup;Choi, Eun-Kyung;Park, Heon-Joo;Kim, Jin-Seok
    • Macromolecular Research
    • /
    • 제15권5호
    • /
    • pp.437-442
    • /
    • 2007
  • Poly(ethylene glycol) methyl ether (PEG)-poly(${\beta}$-amino ester) (PAE) block copolymers were synthesized using a Michael-type step polymerization, and the construction of pH-sensitive polymeric micelles (PM) investigated. The ${\beta}$-amino ester block of the block copolymers functioned as a pH-sensitive moiety as well as a hydrophobic block in relation to the ionization of PAE, while PEG acted as a hydrophilic block, regardless of ionization. The synthesized polymers were characterized using $^1H-NMR$, with their molecular weights measured using gel permeation chromatography. The $pK_b$ values of the pH-sensitive polymers were measured using a titration method. The pH-sensitivity and critical micelle concentration (CMC) of the block copolymers in PBS solution were estimated using fluorescence spectroscopy. The pH dependent micellization behaviors with various bisacrylate esters varied within a narrow pH range. The critical micelle concentration at pH 7.4 decreased from 0.032 to 0.004 mg/mL on increasing the number of methyl group in the bisacrylate from 4 to 10. Also, the particle size of the block copolymer micelles was determined using dynamic light scattering (DLS). The DLS results revealed the micelles had an average size below 100 nm. These pH-sensitive polymeric micelles may be good carriers for the delivery of an anticancer drug.

암세포 내로의 약물 전달 증진 목적의 신규 소마토스타틴 수용체 타겟리간드 합성 및 평가 (Synthesis and Evaluation of a Ligand Targeting the Somatostatin Receptor for Drug Delivery to Tumor Cell)

  • 최선주;홍영돈;이소영;정성희
    • 방사선산업학회지
    • /
    • 제9권4호
    • /
    • pp.193-198
    • /
    • 2015
  • Most of targeted therapies block the action of certain enzymes, proteins, or other molecules involved in the growth and spread of cancer cells to produce its cytotoxic effect. Either small molecule drugs or monoclonal antibodies are mostly used in targeted therapies. Unfortunately, targeted therapy has a certain degree of unwanted side effect like other cytotoxicity inducing chemotherapies. To overcome and to reduce unwanted side effects during a cancer therapy, recently radiopeptide therapies has got the worlds' attraction for the tumor targeting modalities due to its beneficial effect on less side effect compared to cytotoxic chemotherapies. Among radiopeptide therapies, $^{177}Lu$-DOTATATE is a major modality as an effective one invented so far in treating neuroendocrine tumor (NET) and it has been in clinical trials at least one decade. Although it does have rather effective therapeutic effect on NET, it has less effective in rather large solid tumor. There are many ways to improve or increase therapeutic effect of radiopeptide are a finding the potent small molecules to target the tumor site selectively, or a labeling with radioisotope of emitting high energy, or an improving its biological half-life by introducing different moieties to increase lipophilicity. Present study was focus to increase a biological half-life of radio somatostatin which will target the somatostatin receptor by altering the bifunctional chelator (BFCA) by introducing lipophilic moiety to the somatostatin, which would make the labeled peptide stay longer in the tumor site and thus it can intensify the therapeutic effect on tumor cell itself and around tissues.

방사선 가교 기술을 이용한 유효성분 방출력이 우수한 하이드로겔 제조 및 특성 분석 (Characterization and Preparation of the Hydrogel has Excellent Release Effect of the Active Ingredients Using a Radiation Cross-linking Technology)

  • 황승현;안성준;박종석;정성린;권희정;이동윤;임윤묵
    • 방사선산업학회지
    • /
    • 제9권4호
    • /
    • pp.199-207
    • /
    • 2015
  • Typical radiation cross-linked hydrogels has the characteristic that high water content, but low emission efficiency of active ingredients. Therefore, the hydrogel was prepared by the addition to collagen, which is closely related to the formation of skin wrinkles in biocompatibility and highly water-soluble carboxymethyl cellulose sodium salt (CMC) in order to preparation of hydrogels has excellent emission efficiency of active ingredients. Hydrogels were prepared by dissolving CMC and collagen each of 0.5%, 10% concentration in deionized water. Then, prepared hydrogels are performed by gamma-radiation at 1, 3, 5 kGy irradiation dose. The results showed that the gel fraction of after irradiated 3 kGy hydrogel was higher than before irradiated gelation as long as the 55.3%. The swelling rate of irradiated 3 kGy hydrogel was lower than the non-irradiated sample. The compressive strength of 3 kGy irradiated hydrogel was the highest. The visco-elastic did not show any significant differences, even after irradiation. The CMC hydrogel in this study suggested a potential use as a material for the mask pack for improved emission efficiency of the active ingredient and anti-wrinkles.

Polysaccharide-based superhydrophilic coatings with antibacterial and anti-inflammatory agent-delivering capabilities for ophthalmic applications

  • Park, Sohyeon;Park, Joohee;Heo, Jiwoong;Lee, Sang-Eun;Shin, Jong-Wook;Chang, Minwook;Hong, Jinkee
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.229-237
    • /
    • 2018
  • Medical silicone tubes are generally used as implants for the treatment of nasolacrimal duct stenosis. However, side effects such as allergic reactions and bacterial infections have been reported following the silicone tube insertion, which cause surgical failure. These drawbacks can be overcome by modifying the silicone tube surface using a functional coating. Here, we report a biocompatible and superhydrophilic surface coating based on a polysaccharide multilayer nanofilm, which can load and release antibacterial and anti-inflammatory agents. The nanofilm is composed of carboxymethylcellulose (CMC) and chitosan (CHI), and fabricated by layer-by-layer (LbL) assembly. The LbL-assembled CMC/CHI multilayer films exhibited superhydrophilic properties, owing to the rough and porous structure obtained by a crosslinking process. The surface coated with the superhydrophilic CMC/CHI multilayer film initially exhibited antibacterial activity by preventing the adhesion of bacteria, followed by further enhanced antibacterial effects upon releasing the loaded antibacterial agent. In addition, inflammatory cytokine assays demonstrated the ability of the coating to deliver anti-inflammatory agents. The versatile nanocoating endows the surface with anti-adhesion and drug-delivery capabilities, with potential applications in the biomedical field. Therefore, we attempted to coat the nanofilm on the surface of an ophthalmic silicone tube to produce a multifunctional tube suitable for patient-specific treatment.

수종 용제와 투과 촉진제를 이용한 로바스타틴의 용해성 및 피부 투과 증진 (Enhanced Solubility and In vitro Skin Permeation of Lovastatin Using Some Vehicles and Penetration Enhancers)

  • 이나영;전인구
    • 약학회지
    • /
    • 제58권3호
    • /
    • pp.171-180
    • /
    • 2014
  • To enhance the in vitro permeation of lovastatin through excised hairless mouse and human cadaver skins, solubility was determined in various hydrophilic and lipophilic vehicles, and the effects of vehicles and penetration enhancers on the skin permeation from solution formulations were investigated. Solubility of lovastatin was highest in N-methyl-2-pyrrolidone (NMP) ($278.2{\pm}10.1$ mg/ml) and dimethyl sulfoxide (DMSO) ($162.2{\pm}9.7$ mg/ml). Among different pure vehicles used, NMP, DMSO, propylene glycol and isopropyl myristate provided some drug permeation ($6.9{\pm}1.1$, $5.9{\pm}1.6$, $3.0{\pm}0.5$ and $2.2{\pm}0.3{\mu}g/cm^2$ at 24 hr, respectively) through hairless mouse skin. The addition of oleic acid, linoleic acid and oleyl alcohol to DMSO showed the maximum permeation at around 5 v/v%, however, capric acid and caprylic acid had no enhancing effect. The increase of enhancer concentrations showed bell-shaped permeation rate, suggesting the presence of optimal concentration in lovastatin penetration. Increasing donor concentration from 10 mg/ml to 80 mg/ml in DMSO and a cosolvent of DMSO, NMP and DGME (3 : 3 : 4 v/v) did not show significant dose dependent permeation in both hairless mouse and human cadaver skins. The maximum lovastatin flux through human cadaver skin was found to be $0.87{\pm}0.46{\mu}g/cm^2$/hr with 5 v/v% linoleic acid and donor dose of 4 mg/0.64 $cm^2$ in the cosolvent. These results suggest that transdermal delivery of lovastatin would be feasible by establishing the optimal concentrations of donor dose and unsaturated fatty acids in appropriate vehicles.

바이오-메디컬 자성나노입자 연구의 현황과 전망 (Research Status and Prospectives of Magnetic Nanoparticles in Bio-medical Applications)

  • 민지현;송아영;김영근;우준화
    • 한국자기학회지
    • /
    • 제19권1호
    • /
    • pp.28-34
    • /
    • 2009
  • 자성나노입자는 초상자성 특성 및 물리적, 화학적으로 안정된 특성으로 인하여, MRI 조영제, 약물전달, 세포분리, 열치료법 등을 비롯한 바이오-메디컬 분야에 널리 응용되고 있다. 초기에는 균일한 물리적/화학적 특성을 유지하기 위하여, 미세하면서도 균일한 크기의 나노입자 제조에 연구가 집중되었으나, 최근에는 바이오-메디컬 분야에 직접 응용하기 위하여, 수용액에 대한 분산도 향상과 생체적합성 및 생체기능화를 부여하는 것에 연구의 초점이 맞추어지고 있다. 본 논문에서는 자성나노입자 연구의 현황을 살펴보고 향후 진행 방향에 대하여 조망해 보고자 한다.

지능형 약물전달시스템을 위한 pH 감응형 P(MAA-co-EGMA) 수화젤 미세입자의 탑재거동 (Loading Behavior of pH-Responsive P(MAA-co-EGMA) Hydrogel Microparticles for Intelligent Drug Delivery Applications)

  • 신영찬;김규식;김범상
    • 폴리머
    • /
    • 제32권5호
    • /
    • pp.421-426
    • /
    • 2008
  • pH감응형 P(MAA-co-EGMA) 수화젤을 분산 광중합을 이용하여 마이크로 크기의 미세입자로 합성하고 화장품 제형으로서의 응용 가능성을 평가하기 위하여 모델 탑재물질인 Rh-B와 화장품 분야에서 기능성 물질로 사용되는 ascorbic acid, adenosine, EGCG, arbutin을 이용하여 탑재 및 방출 거동을 조사하였다. Rh-B 탑재의 경우, pH 6.5인 수용액에서 이온화에 의한 P(MAA-co-EGMA) 수화젤의 음전하와 Rh-B의 양전하 사이의 정전기적 인력으로 인하여 가장 높은 탑재효율을 나타내었다. 그러나 화장품 기능성 물질들의 경우, pH 6.5 수용액에서 이온화된 P(MAA-co-EGMA) 수화젤의 음전하와 기능성 물질들이 나타내는 음전하 사이의 정전기적 반발력 때문에 상대적으로 낮은 탑재효율을 나타내었다. Rh-B를 사용한 방출실험 결과, p(MAA-co-EGMA) 수화젤 미세입자는 높은 pH에서는 다량의 Rh-B를 그리고 낮은 pH에서는 소량의 Rh-B를 방출하는 pH 감응성 방출거동을 나타내었다.

필로디핀이 함유된 미립구의 생체이용률 (Bioavailability of Microspheres Containing Felodipine)

  • 양재헌;나성범;김영일;김남순
    • 약학회지
    • /
    • 제44권5호
    • /
    • pp.440-447
    • /
    • 2000
  • Microspheres of felodipine, which is one of the calcium channel blocker using a mixture of Eudragi $t^{R}$ RL, L, E, and cellulose on the base of Eudragi $t^{R}$ RS were investigated. Cremopho $r^{R}$ was added to each preparation of polymers in order to increase the release of felodipine from microspheres. Felodipine-loaded microspheres were prepared by a solvent evaporation method, which is based on dispersion of methylene chloride containing felodipine and polymers in 0.5 w/v % polyvinyl alcohol solution. The average diameter based on the size distribution of the felodipine-loaded microspheres was observed to be ca. 40-55 ${\mu}{\textrm}{m}$. A good and smooth surface were showed in all types of the microspheres. The amount of felodipine loaded was over 90 w/w % in all types of microspheres. The dissolution profiles of felodipine from microspheres were similar with each type of polymer, and about a 60 w/w % of the total amount of felodipine loaded to microsphere was released within 7 hours. Dissolution rate of felodipine from the microsphere was increased by addition of Cremophor. After oral administration of the felodipine-loaded microspheres in PVA solution and felodipine alone in PEG solution to rats, respectively, the pharmacokinetic study revealed that the Tmax values of the microspheres were observed in the range of 0.67~l.0 hr while that of the felodipine solution was obtained 0.33 hr. In addition, the AUC of the microspheres at 0 to 7 hr was remarkably increased in comparison to that of felodipine solution. These results revealed that the microspheres based on Eudragit RS could be a good candidate for the controlled release drug delivery system for felodipine.e.e.e.

  • PDF