• Title/Summary/Keyword: Drug-delivery

검색결과 1,135건 처리시간 0.026초

화상 및 창상에 대한 자근.치자 복합제제의 경피 흡수 및 치료효과 (Transdermal Drug Delivery & Therapeutic Effect of the Preparations of Lithospermi Radix and Gardeniae Fructus Extracts on the Burn & Wound Healing)

  • 민동훈;김대근;임종필;양재헌
    • Journal of Pharmaceutical Investigation
    • /
    • 제35권4호
    • /
    • pp.255-263
    • /
    • 2005
  • Research was undertaken to compare the pharmacological activity of Lithospermi radix (LR) reported as an oriental medicine for classical uses. LR contains naphthoquinone pigments : shikonin, acetylshikonin, isobutylshikonin, etc. LR is used for the treatment of excision wound, burn, eczema, blister, scarlatina and septicemia as antifebrile, antidotic and antiphlogistic. Gardeniae fructus (GF) has been used for the treatment to jaundice, hepatic disease, anti-inflammatory and analgesic effects, and it contains crocin, geniposide and its derivatives. The therapeutic effects of burn and excision wound healing from LR & GF hydrogel with $Nano-ATP^{\circledR}$ (GLN) were investigated. To evaluate the therapeutic value of various hydrogels, thermal burn model and excision wound mouse model were used. The burn and wound reduction rate and therapeutic period were measured to calculate the healing extent after 5 experiments. The 2nd degree burn was prepared on hairless mouse back skin and dressing with collagen. The burn and wound reduction rate of GLN hydrogel treated group decreased more rapidly than that of other gel group in animal model. Furthermore therapeutic periods of GLN hydrogel treated group was shorter than that of other gel group. In anti-inflammatory test, GLN hydrogel treated group decreased edema rapidly than that of other gel group. These results suggest that the GLN hydrogel treatment has an therapeutic effect on burn and excision wound healing.

폴리락티드-글리콜리드 마이크로스피어에 봉입된 단백질의 항원성 평가 (Antigenicity of Protein Entrapped in Poly(lactide-co-glycolide) Microspheres)

  • 송세현;조성완;신택환;윤미경;최영욱
    • Journal of Pharmaceutical Investigation
    • /
    • 제31권3호
    • /
    • pp.191-196
    • /
    • 2001
  • Biodegradable polymeric microspheres were studied for their usefulness as carriers for the delivery of vaccine antigens. However, protein antigen could be denatured during microencapsulation processes due to the exposure to the organic phase and stress condition of cavitation and shear force. Therefore this study was carried out to re-evaluate the degree of protein denaturation during microencapsulation with poly(lactide-co-glycolide) (PLGA) copolymer. PLGA microspheres containing ovalbumin (OVA), prepared by W/O/W multiple emulsification method, were suspended in pH 7.4 PBS and incubated with shaking at $37.5^{\circ}C$. Drug released medium was collected periodically and analyzed for protein contents by micro-BCA protein assay. In order to evaluate the protein integrity, release medium was subjected to the analyses of SDS-PAGE and size exclusion chromatography (SEC). And enzyme-linked immunosorbent assay (ELISA) was introduced to measure the immunoreactivity of entrapped OVA and to get an insight into the three-dimensional structure of epitope. The structures of entrapped protein were not affected significantly by the results of SDS-PAGE and SEC. However, immunoreactivity of released antigen was varied, revealing the possibility of protein denaturation in some microspheres when it was evaluate by ELISA method. Therefore, in order to express the degree of protein denaturation, antigenicity ratio (AR) was obtained as follows: amount of immunoreactivity of OVA/total amount of OVA released ${\times}100(%)$. ELISA method was an efficient tool to detect a protein denaturation during microencapsulation and the comparison of AR values resulted in more accurate evaluation for immunoreactivity of entrapped protein.

  • PDF

Biological effects of zinc oxide nanoparticles on inflammation

  • Kim, Min-Ho
    • 셀메드
    • /
    • 제6권4호
    • /
    • pp.23.1-23.6
    • /
    • 2016
  • With the rapid developments in nanotechnology, an increasing number of nanomaterials have been applied in various aspects of our lives. Recently, pharmaceutical nanotechnology with numerous advantages has growingly attracted the attention of many researchers. Zinc oxide nanoparticles (ZnO-NPs) are nanomaterials that are widely used in many fields including diagnostics, therapeutics, drug-delivery systems, electronics, cosmetics, sunscreens, coatings, ceramic products, paints, and food additives, due to their magnetic, catalytic, semiconducting, anti-cancer, anti-bacterial, anti-inflammatory, ultraviolet-protective, and binding properties. The present review focused on the recent research works concerning role of ZnO-NP on inflammation. Several studies have reported that ZnO-NP induces inflammatory reaction through the generation of reactive oxygen species by oxidative stress and production of inflammatory cytokines by activation of nuclear factor-${\kappa}B$ ($NF-{\kappa}B$). Meanwhile, other researchers reported that ZnO-NP exhibits an anti-inflammatory effect by inhibiting the up-regulation of inflammatory cytokines and the activation of $NF-{\kappa}B$, caspase-1, $I{\kappa}B$ $kinase{\beta}$, receptor interacting protein2, and extracellular signal-regulated kinase. Previous studies reported that size and shape of nanoparticles, surfactants used for nanoparticles protection, medium, and experimental conditions can also affect cellular signal pathway. This review indicated that the anti-inflammatory effectiveness of ZnO-NP was determined by the nanoparticle size as well as various experimental conditions. Therefore, the author suggests that pharmaceutical therapy with the ZnO-NP is one of the possible strategies to overcome the inflammatory reactions. However, further studies should be performed to maximize the anti-inflammatory effect of ZnO-NP to apply as a potential agent in biomedical applications.

초음파 조사에 의한 트리암시놀론 아세토니드 겔의 피부투과 (Transdermal Delivery of Triamcinolone acetonide Gel by Ultrasound)

  • 송경숙;김영일;양재헌
    • Journal of Pharmaceutical Investigation
    • /
    • 제32권2호
    • /
    • pp.87-93
    • /
    • 2002
  • This study is to enhance drug penetration via skin and investigate anti-inflammation effect following adoption of ultrasound. For this goal gel containing triamcinolone was prepared and the skin penetration rate and the change effects of blood plasma ingredients and serum enzyme were investigated. Using Franz type diffusion cell and the skin of hairless mouse, the permeation enhancing effect of ultrasound was tested. After the injury by direct trauma, the blood test was performed by measuring WBC, lymphocyte, and neutrophyl, and by analyzing CPK and LDH. The ultrasound transducer whose technical specification is geometric area(GA) $1.4\;cm^2$, effective radiation area(ERA) $0.8\;cm^2$, and beam non-uniformity ratio(BNR) 6.0 max was used. The influence of frequency having an effect on skin permeation rate was higher in the case of using 1MHz and continuous treatment. The temperature of receptor phase was not influenced in skin permeation by phonophoresis. Skin permeation increase attended by intensity of ultrasound, the permeation of triamcinolone was accelerated at $2.5\;w/cm^2\;than\;1.0\;w/cm^2$. Following muscle injury phonophoretic group the number of WBC, neutrophil and lympholyte were decreased significantly as compared with both control group and ultrasound group. The result of variation of serum CPK and LDH activity conformed to the phonophoretic effect as same pattern with the variation of WBC, neutrophil and lymphocyte.

Poly(Ethylene Glycol)-branched Polyethylenimine-poly(L-phenylalanine) Block Copolymer Synthesized by Multi-initiation Method for Formation of More Stable Polyelectrolyte Complex with Biotherapeutic Drugs

  • Park, Woo-Ram;Na, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권2호
    • /
    • pp.95-102
    • /
    • 2011
  • An amphiphilic cationic branched methoxy poly (ethylene glycol)-branched polyethylenimine - poly(L-phenylalanine) (mPEG-bPEI-pPhe) block copolymer was successfully synthesized by ring-opening polymerization (ROP) of N-carboxyanhydride of L-phenylalanine (Phe-NCA) with mPEG-bPEI for the preparation of more stable polyelectrolyte complex (PEC) included a hydrophobic interaction. mPEG-bPEI was firstly prepared by the coupling of mPEG and bPEI using hexamethylene diisocyanate (HMDI). The structural properties of mPEG-bPEI-pPhe copolymers were confirmed by $^1H$ NMR. The copolymers exhibited a self-assemble behavior in water above critical aggregate concentration (CAC) in the range of 0.01-0.14 g/L. The CAC of copolymers obviously depended on the hydrophobic block content in the copolymers (the value decreased with the increase of the pPhe block content). The cationic copolymers have the ability to form multi-interaction complex (MIC) with bovine serum albumin (BSA) and plasmid DNA through multi-interaction (electrostatic and hydrophobic interaction). The physicochemical characterization of the complex was carried out by the measurement of zeta potential and particle size. Their zeta-potentials were positive (approximately +10 mV) and their sizes decreased with increasing pPhe contents in the copolymers (PPF/BSA wt% ratio = 2). The complex showed good stability at high ionic strength. Therefore, mPEG-bPEI-pPhe block copolymer was considered as a potential material to enhance the stability of complex including biotherapuetic drugs.

Synthesis and Characterization of Biodegradable Elastic Hydrogels Based on Poly(ethylene glycol) and Poly(${\varepsilon}-caprolactone$) Blocks

  • Im, Su-Jin;Choi, You-Mee;Subramanyam, Elango;Huh, Kang-Moo;Park, Ki-Nam
    • Macromolecular Research
    • /
    • 제15권4호
    • /
    • pp.363-369
    • /
    • 2007
  • Novel biodegradable elastic hydrogels, based on hydrophilic and hydrophobic polymer blocks, were synthesized via the radical crosslinking reaction of diacrylates of poly(ethylene glycol) (PEG) and poly(${\varepsilon}-caprolactone$) (PCL). PEG and PCL diols were diacrylated with acryloyl chloride in the presence of triethylamine, with the reaction confirmed by FT-IR and $^1H-NMR$ measurements. The diacrylate polymers were used as building-blocks for the syntheses of a series of hydro gels, with different block compositions, by simply varying the feed ratios and molecular weights of the block components. The swelling ratio of the hydrogels was controlled by the balance between the hydrophilic and hydrophobic polymer blocks. Usually, the swelling ratio increases with increasing PEG content and decreasing block length within the network structure. The hydrogels exhibited negative thermo-sensitive swelling behavior due to the coexistence of hydrophilic and hydrophobic polymer components in their network structure, and such thermo-responsive swelling/deswelling behavior could be repeated using a temperature cycle, without any significant change in the swelling ratio. In vitro degradation tests showed that degradation occurred over a 3 to 8 month period. Due to their biodegradability, biocompatibility, elasticity and functionality, these hydrogels could be utilized in various biomedical applications, such as tissue engineering and drug delivery systems.

A clinical Comparison of Lobaplatin or Cisplatin with Mitomycine and Vincristine in Treating Patients with Cervical Squamous Carcinoma

  • Li, Wei-Ping;Liu, Hui;Chen, Li;Yao, Yuan-Qing;Zhao, En-Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권11호
    • /
    • pp.4629-4631
    • /
    • 2015
  • Background: The research was to compare the efficacy and side effects of cisplatin or lobaplatin in combination with mitomycine (MMC) and vincristine in treating patients with cervical squamous carcinoma. Materials and Methods: Cervical squamous carcinoma patients who were pathologically diagnosed with stage Ib-IIb from April 2012 to May 2013 in the general hospital of Chinese People's Libration Amy were enrolled. All patients were confirmed without prior treatment and were randomly divided into two groups, Group A and B. Efficacy and side effects were evaluated after one cycle of chemotherapy. Results: Group A (n=42) were treated with Loubo$^{(R)}$ (Lobaplatin) $50mg/m^2$, MMC $16mg/m^2$ and Vincristine $2mg/m^2$ every 21 days. Group B (n=44) were treated with Cisplatin $100mg/m^2$, MMC $16mg/m^2$ and Vincristine $2mg/m^2$ every 21 days. All 86 patients completed one cycle of chemotherapy with cisplatin or lobaplatin in combination with MMC and vincristine. No difference was observed regardiing short-term effect between two groups. Main side effects were bone marrow suppression and gastrointestinal reactions including decrease of white blood cells, platelet and nausea/vomiting. Grade III-VI liver and kidney impairment was not reported in two groups. In group A the incidence of uterine artery spasm in the process of drug delivery was significantly lower than the group B. Conclusions: Cisplatin or lobaplatin with MMC and Vincristine in the interventional treatment of cervical squamous carcinoma were effective, especially after uterine artery perfusion chemotherapy at tumor reduction and tumor downstaging period. The adverse reactions of concurrent chemotherapy are tolerable, and low physical and mental pressure even more less stimulation of vascular in treatment with lobaplatin. However, the long-term effects of this treatment need further observation.

푸드뱅크 기탁 조리식품의 미생물학적 위해분석 (II) (Microbiological Hazard Analysis of Cooked Foods Donated to Foodbank (II))

  • 박형수;류경
    • 대한영양사협회학술지
    • /
    • 제13권4호
    • /
    • pp.389-406
    • /
    • 2007
  • This study was conducted to estimate the safety level of non-cooking and cooking processed foods to propose the sanitary management of foods donated to foodbanks. The time and temperature were measured and the microbial levels of aerobic plate counts (APC), coliforms, E. coli, Salmonella spp., S. aureus, B. cereus, and E. coli O157:H7 were analyzed on ten food items donated to seven foodbanks. The amount of cooked foods donated to each foodbank was about 10 to 40 servings. All foodbanks hired a supervisor and had at least one refrigerator/freezer and one temperature-controlled vehicle, but only four foodbanks had the separate offices to manage the foodbank operation. The flow of donated foods was gone through the steps; production, meal service and holding at donator, collection by foodbank, transport (or holding after transport) and distribution to recipients. After production, the levels of APC of both non-cooking and cooking processed foods were complied with the standards by Ministry of Education & Human Resources Development, and were not increased till distribution. Only the level of coliforms in dried squid & cucumber salad (1.5×$10^3$ CFU/g) was not met the standards. E. coli and other pathogens were not detected in all tested samples. The microbial levels of delivery vessels and work tables were satisfactory, but the APC levels of two of four tested serving tables (6.9×$10^3$ and 5.3×$10^3$ CFU/100$cm^2$) and the coliforms level of one (1.1×$10^3$ CFU/100$cm^2$) were over the standards. The air-borne microflora level in serving room was estimated as satisfactory. It took about 3.0 to 6.5 hours from after-production to distribution and the temperatures of donated foods were exposed mostly to temperature danger zone, which had a high potential of microbial growth. These results imply that a checklist to monitor time and temperature in each step should be provided and the employees involving foodbank operation should be properly educated to ensure the safety of donated foods.

  • PDF

인공피부 개발을 위한 생채 적합성 지지체에 관한 연구

  • 김창환;김천호;박현숙;강현주;한은숙;김윤영;최영주;이수현;최태부;손영숙
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.429-432
    • /
    • 2000
  • 생체 적합성, 생분해성, 항균성 등의 특징을 갖는 키토산 지지체는 type I -p collagen과 bFGF 또는 fibronectin을 함께 코팅함으로써 세포적합성을 향상시켜 섬유아세포의 증식과 ECM의 분비를 증가시킬 수 있으며, 인공피부를 위한 적합한 지지체로 사용될 수 있다고 사료된다.

  • PDF

초음파의 매개변수에 따른 Meloxicam Gel의 경피투과 촉진효과 (Skin Permeation Effects of Meloxicam Gel on Ultrasound Parameters by Phonophoresis)

  • 최석주;윤세원;정대인;김영일;정진규;김태열
    • 대한임상전기생리학회지
    • /
    • 제4권1호
    • /
    • pp.49-61
    • /
    • 2006
  • This study conducted the following experiment to examine and compare transdermal permeation effects according to parameters of ultrasound and physiochemical characteristics of meloxicam. Permeation by ultrasound among these experimental drugs was relatively higher and it was involved in COX-2 inhibition unlike other drugs. Recently use of oral agents has been rapidly increased, but it was not generalized to transdermal agent and this study selected meloxicam that transdermal permeation research using ultrasound was not performed and conducted transdermal permeation experiment with skin of hairless mouse and analyzed permeation with HPLC. It made gel first and analyzed permeation depending on frequency and intensity of ultrasound of meloxicam with the same experimental procedures as the above experiment. The results of this study can be summarized as follows. Transdermal permeation by ultrasound frequency was higher in 1.0 MHz and it was higher as intensity increased. In comparison by parameters of ultrasound, there was similar permeation in $1.0\;W/cm^2$ of continuous mode and $3.0\;W/cm^2$ of pulsed mode and it was effective to high intensity for using pulsed mode. It was found that duty cycle of ultrasound affected transdermal permeation in meloxicam gel used in this experiment and transdermal permeation was higher in used ultrasound as phonophoresis than non-ultrasound for anti-inflammatory effects.

  • PDF