• Title/Summary/Keyword: Drug-associated

Search Result 1,268, Processing Time 0.03 seconds

POULTRY WASTES AS FOODS FOR RUMINANTS AND ASSOCIATED ASPECTS OF ANIMAL WELFARE - Review -

  • Roothaert, R.L.;Matthewman, R.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.4
    • /
    • pp.593-600
    • /
    • 1992
  • Animal welfare is often neglected by livestock productionists when considering the utilization of animal wastes for livestock feeds. The present review has been carried out to examine the nutritive value of poultry wastes for ruminants, the health risks involved with feeding it, the treatment and feeding methods and the production responses of animals fed on it. It was found that mineral, crude protein, crude fibre and metabolisable energy concentrations are influenced by the system of poultry production, the storage of the waste and the treatment method. Heating at $60^{\circ}C$ kills all pathogens apart from Clostidium botulinum whereas proper ensiling kills all. Apart from the kidney fat and the liver, animal tissues have not shown residues of drugs or heavy metals from poultry wastes. Palatability is affected when the moisture is more than 200 g/kg. Production responses are satisfactory when poultry wastes replace portions of concentrates. It was concluded that poultry litter generally has higher metabolisable energy contents than poultry manure, but research is needed to classify poultry litters on their energy values. The adverse effects of toxic minerals and drug residues are negligible in balanced poultry waste feeding systems.

SIRAS (ALBIZIA LEBBECK (L.) BENTH.) AND ITS MEDICINAL USES IN UNANI MEDICINE- A REVIEW

  • Waseem, Azma;Jamal, Anwar;Ahmad, Waseem;Fazil, Mohammad
    • CELLMED
    • /
    • v.10 no.2
    • /
    • pp.12.1-12.5
    • /
    • 2020
  • Higher incidences of adverse reaction associated with the prolonged use of synthetic drugs has once again increased the faith of humans in the traditional systems of medicine and motivated them to return back towards the clinical proven remedies for the treatment. It is also true that number of modern medications used in the present scenario, were developed from various plants. In Unani System of medicine, numerous herbal drugs are mentioned for medicinal purpose. Siras (Albizia lebbeck (L.) Benth.) is one of them. It is found all over India. Almost all parts of this plant are used for the treatment of ailments such as migraine, conjunctivitis, diarrhea, jaundice, skin problems, asthma etc. Many chemical constituents have been isolated from Albizia lebbeck such as lebbekannin, echinocystic acid, flavonoids, Linoleic acid, saponins etc. This review highlights the medicinal properties and therapeutic uses of Albizia lebbeck and scientific studies conducted on the drug in human and animal models that will provide the further research direction.

A CoMFA Study of Glycogen Synthase Kinase 3 Inhibitors

  • Balupuri, Anand;Balasubramanian, Pavithra K.;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.8 no.1
    • /
    • pp.40-47
    • /
    • 2015
  • Glycogen synthase kinase 3 (GSK-3) is a serine/threonine protein kinase that has recently emerged as a promising target in drug discovery. It is involved in multiple cellular processes and associated with the pathogenesis of several diseases. A three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis was performed on a series of GSK-3 inhibitors to understand the structural basis for inhibitory activity. Comparative molecular field analysis (CoMFA) method was used to derive 3D-QSAR models. A reliable CoMFA model was developed using ligand-based alignment scheme. The model produced statistically acceptable results with a cross-validated correlation coefficient ($q^2$) of 0.594 and a non-cross-validated correlation coefficient ($r^2$) of 0.943. Robustness of the model was checked by bootstrapping and progressive scrambling analysis. This study could assist in the design of novel compounds with enhanced GSK-3 inhibitory activity.

Chloroquine Exerts Anti-metastatic Activities Under Hypoxic Conditions in Cholangiocarcinoma Cells

  • Thongchot, Suyanee;Loilome, Watcharin;Yongvanit, Puangrat;Dokduang, Hasaya;Thanan, Raynoo;Techasen, Anchalee;Namwat, Nisana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.2031-2035
    • /
    • 2015
  • Intra-tumoral hypoxia is an environment that promotes tumor cell migration, angiogenesis and epithelial-mesenchymal transition that accounts for a major mechanism of metastasis. Chloroquine potentially offers a new therapeutic approach with an 'old' drug for effective and safe cancer therapies, as it exerts anti-metastatic activity. We investigated the inhibitory effect of chloroquine on cholangiocarcinoma (CCA) cell migration under cobalt chloride ($CoCl_2$)-stimulated hypoxia. We showed that chloroquine suppressed CCA cell migration under hypoxic-mimicking conditions on exposure to $100{\mu}M$ $CoCl_2$. Moreover, chloroquine stabilized the protein level of prolyl hydroxylase domain proteins (PHD-2) but reduced the levels of hypoxic responsive proteins such as hypoxia-inducible factor (HIF-$1{\alpha}$) and vascular endothelial growth factor (VEGF). It also suppressed epithelial mesenchymal transition (EMT) by increasing the ratio of E-cadherin to N-cadherin under hypoxic conditions. In conclusion, chloroquine can inhibit hypoxia-stimulated metastasis via HIF-$1{\alpha}$/VEGF/EMT which may serve as a useful additional strategy for CCA therapy.

Activity of Allyl Isothiocyanate and Its Synergy with Fluconazole against Candida albicans Biofilms

  • Raut, Jayant Shankar;Bansode, Bhagyashree Shridhar;Jadhav, Ashwini Khanderao;Karuppayil, Sankunny Mohan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.685-693
    • /
    • 2017
  • Candidiasis involving the biofilms of Candida albicans is a threat to immunocompromised patients. Candida biofilms are intrinsically resistant to the antifungal drugs and hence novel treatment strategies are desired. The study intended to evaluate the anti-Candida activity of allyl isothiocyanate (AITC) alone and with fluconazole (FLC), particularly against the biofilms. Results revealed the concentration-dependent activity of AITC against the planktonic growth and virulence factors of C. albicans. Significant (p <0.05) inhibition of the biofilms was evident at ${\leq}1mg/ml$ concentrations of AITC. Notably, a combination of 0.004 mg/ml of FLC and 0.125 mg/ml of AITC prevented the biofilm formation. Similarly, the preformed biofilms were significantly (p <0.05) inhibited by the AITC-FLC combination. The fractional inhibitory concentration indices ranging from 0.132 to 0.312 indicated the synergistic activity of AITC and FLC against the biofilm formation and the preformed biofilms. No hemolytic activity at the biofilm inhibitory concentrations of AITC and the AITC-FLC combination suggested the absence of cytotoxic effects. The recognizable synergy between AITC and FLC offers a potential therapeutic strategy against biofilm-associated Candida infections.

Identification of New Potential APE1 Inhibitors by Pharmacophore Modeling and Molecular Docking

  • Lee, In Won;Yoon, Jonghwan;Lee, Gunhee;Lee, Minho
    • Genomics & Informatics
    • /
    • v.15 no.4
    • /
    • pp.147-155
    • /
    • 2017
  • Apurinic/apyrimidinic endonuclease 1 (APE1) is an enzyme responsible for the initial step in the base excision repair pathway and is known to be a potential drug target for treating cancers, because its expression is associated with resistance to DNA-damaging anticancer agents. Although several inhibitors already have been identified, the identification of novel kinds of potential inhibitors of APE1 could provide a seed for the development of improved anticancer drugs. For this purpose, we first classified known inhibitors of APE1. According to the classification, we constructed two distinct pharmacophore models. We screened more than 3 million lead-like compounds using the pharmacophores. Hits that fulfilled the features of the pharmacophore models were identified. In addition to the pharmacophore screen, we carried out molecular docking to prioritize hits. Based on these processes, we ultimately identified 1,338 potential inhibitors of APE1 with predicted binding affinities to the enzyme.

HQSAR Study of Microsomal Prostaglandin E2 Synthase (mPGES-1) Inhibitors

  • San Juan, Amor A.;Cho, Seung-Joo;Cho, Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1531-1536
    • /
    • 2006
  • Microsomal prostaglandin $E_2$ synthase (mPGES-1) is an enzyme that is associated with inflammation, pain, fever and cancer. Hologram quantitative structure activity relationship (HQSAR) was conducted on the series of MK-886 compounds acting as mPGES-1 inhibitors. A training set with 24 compounds was used to establish the HQSAR model. The best model was chosen based on the cross-validated correlation coefficient ($q^2$=0.884) and the correlation coefficient($r^2$=0.976). The model was utilized to predict the activity of the eight-test set of compounds giving the predictive $r^2$ value of 0.845. The descriptors of the model are based on fragment distinction (atoms, bond and connectivity) and fragment size (2-5 atoms). The atomic contribution maps generated from HQSAR were useful in identifying the important structural features responsible for the inhibitory activity of MK-886 inhibitors. Based on the generated model, the presence of hydrophobic biphenyl group seems to enhance inhibition of mPGES-1 that is in agreement with the previous experiments. In addition, it seems important for a halogen to be substituted to the biphenyl ring and for an acyl group to be attached to the indole moiety for enhanced activity.

REGULATION OF RAT ADRENAL MEDULLARY PHENYLETHANOL AMINE N-METHYLTRANSFERASE

  • Yoo, Young-Sook;Wong, Dona L.
    • Toxicological Research
    • /
    • v.6 no.1
    • /
    • pp.89-97
    • /
    • 1990
  • Neural regulation of phenylethanolamine N-meth-yltransferase (PNMT) was studied with reserpine as a neuronal agent in rat adrenal medulla. The enzyme activity assay and northern blot analysis were performed to determine whether the induction of PNMT activity after reserpine treatment was associated with elevation of mRNA coding for PNMT. The i.p. administration of reserpine (2.5 mg/kg) on alternate days fot 4 injections to rats brought about 30% increase of adrenal medullary PNMT activity and approximately 60% stimulation of the PNMT mRNA level in rat adrenal gland. A dose of 10 mg/kg of reserpine was chosen to perform optimum induction of PNMT activity in the rat adrenal gland based on the results of dose response curve of reserpine. Time course reserpine (10 mg/kg) effects on the rat adrenal medullary PNMT were as follows: 1. Peripheral PNMT activity reached maximum level after 7 days of drug treatment on alternate days. 2. Trans-synaptic stimulation by reserpine increased pretranslational activity of rat adrenal PNMT, but not translational activity. 3. Immunotitration of PNMT molecule after reserpine treatment indicated that reserpine produced an enzyme with greater antibody affinity than endogenous molecule in the rat adrenal gland.

  • PDF

Recurrent Pseudomonas aeruginosa Infection in Chronic Lung Diseases: Relapse or Reinfection?

  • Yum, Ho-Kee;Park, I-Nae;Shin, Bo-Mun;Choi, Soo-Jeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.77 no.4
    • /
    • pp.172-177
    • /
    • 2014
  • Background: Pseudomonas aeruginosa infection is particularly associated with progressive and ultimately chronic recurrent respiratory infections in chronic obstructive pulmonary disease, bronchiectasis, chronic destroyed lung disease, and cystic fibrosis. Its treatment is also very complex because of drug resistance and recurrence. Methods: Forty eight cultures from 18 patients with recurrent P. aeruginosa pneumonia from 1998 to 2002 were included in this study. Two or more pairs of sputum cultures were performed during 2 or more different periods of recurrences. The comparison of strains was made according to the phenotypic patterns of antibiotic resistance and chromosomal fingerprinting by pulsed field gel electrophoresis (PFGE) using the genomic DNA of P. aeruginosa from the sputum culture. Results: Phenotypic patterns of antibiotic resistance of P. aeruginosa were not correlated with their prior antibiotic exposition. Fifteen of 18 patients (83.3%) had recurrent P. aeruginosa pneumonia caused by the strains with same PFGE pattern. Conclusion: These data suggest that the most of the recurrent P. aeruginosa infections in chronic lung disease occurred due to the relapse of prior infections. Further investigations should be performed for assessing the molecular mechanisms of the persistent colonization and for determining how to eradicate clonal persistence of P. aeruginosa.

Effect of ${\alpha}$-Glycosidase Inhibitor in Multidrug Resistant Cell Lines

  • Paek, Nam-Soo;Namgung, Jun;Lee, Jung-Joon;Choi, Yong-Jin;Kim, Tae-Han;Kim, Kee-Won
    • BMB Reports
    • /
    • v.31 no.3
    • /
    • pp.269-273
    • /
    • 1998
  • The objective of this study was to evaluate the reversal of multi drug resistance of human cell lines by specific inhibitors of ${\alpha}-glycosidase$ and mannosidases that had been reported to be involved in N-linked oligosaccharide processing of glycoproteins. N-methyldeoxynojirimycin, I-deoxynojirimycin, and castanospermine, which were known to be potent inhibitors of both ${\alpha}-glycosidase$ I and II, showed no activity against the multidrug resistant phenotype of the cell lines of SNU1DOX, KB-V1, and MCF-7/ADR. In contrast, I-deoxymannojirimycin, an inhibitor of mannosidase I, resulted in a slight reversal for the vinblastine resistance of the KB-V1 cell line, but did not show any activity toward the other cell lines. Parallel experiments with tunicamycin, an inhibitor of N-linked glycosylation, also resulted in no significant changes in multidrug resistant (MDR) phenotype of the cell lines tested in this work. These observations suggest that the unglycosylation of P-glycoprotein associated with the inhibitor treatments might not be correlated with the reversal of multidrug resistance of the cell lines tested in this study.

  • PDF