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Apurinic/apyrimidinic endonuclease 1 (APE1) is an enzyme responsible for the initial step in the base excision repair pathway 
and is known to be a potential drug target for treating cancers, because its expression is associated with resistance to 
DNA-damaging anticancer agents. Although several inhibitors already have been identified, the identification of novel kinds 
of potential inhibitors of APE1 could provide a seed for the development of improved anticancer drugs. For this purpose, we 
first classified known inhibitors of APE1. According to the classification, we constructed two distinct pharmacophore models. 
We screened more than 3 million lead-like compounds using the pharmacophores. Hits that fulfilled the features of the 
pharmacophore models were identified. In addition to the pharmacophore screen, we carried out molecular docking to 
prioritize hits. Based on these processes, we ultimately identified 1,338 potential inhibitors of APE1 with predicted binding 
affinities to the enzyme. 
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Introduction

DNA damage occurs naturally and due to the environ-
ment, altering the cell’s abilities that are encoded by the 
DNA, and may lead to diseases, like cancer. Cells respond to 
DNA damage by DNA repair and cellular apoptosis [1, 2]. 
Apurinic/apyrimidinic endonuclease (APE) is an enzyme 
that identifies damaged apurinic/apyrimidinic sites in DNA, 
cuts the phosphodiester bond in the backbone of the sites, 
and has critical roles in the base excision pathway [3]. APE1 
has recently been noted as a potential drug target for treating 
cancer, in that overexpression of the enzyme has been 
observed and shown to be associated with a poor response to 
cancer treatment, such as radiation and anticancer drugs, 
and a lower overall survival rate [4-7]. Antineoplastic agents 
that are to treat cancers are known to induce the expression 
of APE1, increasing the resistance of tumor cells to drug 
treatment. Thus, compounds that inhibit the activity of APE1 
could be potential anticancer drugs with DNA-damaging 
antineoplastic agents used in the clinic [8].

For this reason, there have been several attempts to 
develop compounds targeting APE1. Currently, although 
there is no approved drug yet, three candidates—7-nitroin-
dole-2-carboxylic acid (also known as CRT0044876) [9, 10], 
lucanthone (also known as Miracil D) [9], and methoxya-
mine (trademark TRC102)—are known to inhibit APE1 
activity and are under examination in clinical trials. Lucan-
thone and CRT0044876 have rings similar to the deoxyri-
bose sugar ring without a base and many hydrogen bond 
acceptors that can interact with hydrogen bond donors in the 
active site of APE1. These properties lead APE1 to stick in 
the site and prevent it from repairing DNA damage [11]. 
Methoxyamine is known to attack the open-ring form of AP 
sites to form an oxime linkage. In other words, methox-
yamine blocks APE1 from accessing the lesion site rather 
than targeting the enzyme directly. This may lead to nons-
pecific off-target effects [12, 13]. Although several inhibitors 
of APE1 have been discovered, most potent compounds have 
weaknesses [14]. Thus, it is necessary to find novel kinds of 
potential inhibitors targeting APE1. Here, we present out 
work, in which we applied pharmacophore modeling and 
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Fig. 2. Clustering of molecules for construction of pharmacophore models.

Fig. 1. Outline of overall procedures of the screen to find potential
inhibitors of apurinic/apyrimidinic endonuclease 1.

virtual screening. The overall procedures we carried out are 
illustrated in Fig. 1. We constructed pharmacophore models 
by capturing the common features of known inhibitors of 
APE1. The modes were used to screen a vast number of 
lead-like compounds, and molecular docking was used to 
prioritize the hits of the screen. 

Methods
Selection of ligands for pharmacophore modeling

From the ChEMBL [15] database, we retrieved 52 com-
pounds known to be targets of APE1 and 51 compounds with 
an IC50 of less than 10 μM. By eliminating redundancy, the 
number of compounds was reduced into 83. The list did not 
contain methoxyamine; so, methoxyamine was also added to 
the list. 

We clustered these 84 compounds by Tanimoto distance, 
based on the PubChem fingerprint [16], and finally catego-
rized them into two groups by excluding two outliers 
(CHEMBL1213633 and CHEMBL313493) (Fig. 2). A total of 
49 molecules in group 1 (Fig. 3) and 33 molecules in group 
2 (Fig. 4) were used to generate pharmacophore models 1 
and 2, respectively.
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Fig. 3. Structures of the 49 compounds in group 1 used to generate pharmacophore model 1. 
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Fig. 4. Structures of the 33 compounds in group 2 used to generate pharmacophore model 2.

Generation of pharmacophore model 

Ligandscout tools 4.1 [17] was used to generate the 
ligand-based pharmacophore models. Ligandscout is known 
to be able to increase the selectivity of a pharmacophore 
model with the excluded volume feature. To generate more 
flexible pharmacophore, the threshold of the portion of 
partially matching features was set to 20%. 

Pharmacophore screen

For the initial set of the pharmacophore screen, we 
selected a lead-like subset [18], defined by the ZINC 
database (ZINC is not commercial) [19]. Similar to druglike-
ness [20], like Lipinski’s rule of 5 [21], lead-like compounds 
are defined as being large enough to be validated in experi-
ments but are smaller than most drugs, optimized too 
specifically, and more soluble than their drug-like compo-
unds. ZINC provides a lead-like subset fulfilling leadlikeness 
as follows: (1) molecular weight between 250 and 350 Da, 
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Fig. 5. Pharmacophore models used 
for screening. Models were generated 
by compounds in group 1 (A) and 
group 2 (B). 

Fig. 6. Distribution of predicted binding affinities by molecular 
docking of potential inhibitors to apurinic/apyrimidinic endonu-
clease 1.

(2) partition coefficient log p ≤3.5, and (3) no more than 
seven rotatable bonds. The structures of lead-like com-
pounds in medium pH were downloaded and converted into 
a database for screening by idbgen, a component of Ligand-

scout. We carried out pharmacophore screens using iscreen in 
Ligandscout for models 1 and 2 independently. Pharma-
cophore fit scores were also calculated by LigandScout based 
on the number of matching pharmacophore features and the 
root-mean-square deviation of the pharmacophore align-
ment.

Molecule docking simulation

To prioritize the hits of the pharmacophore screen, we 
docked the hits against previously determined structures of 
APE1 [22] (PDB ID: 1DEW) using AutoDock Vina [23]. A 
binding site of APE1 was assigned using the fpocket 
algorithm [24]. 

Results and Discussion

A total of 84 compounds from the ChEMBL database were 
first collected to generate a pharmacophore, but their 
structures and properties were too heterogeneous to get 
common features. Thus, we carried out clustering and 
categorized the compounds into two groups (Figs. 2‒4). For 
each group of compounds, we generated the corresponding 
pharmacophore model. Pharmacophore model 1 was gene-
rated by 49 compounds from group 1. The model was 
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Fig. 7. Structures and scores of the 
screen of the top 10 hits.
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Fig. 8. Mapping of top 10 hits to pharmacophore models. (A) Model 1. (B) Model 2.

composed of four features (one hydrophobic centroid, one 
aromatic ring, two hydrogen acceptors) and three exclusion 
volume spaces (Fig. 5A). Model 2 was generated by 33 
compounds from group 2. The model was composed of four 
features (one negative ionizable and three hydrogen bond 
acceptors) and 12 exclusion volume spaces (Fig. 5B).

For 3,563,829 lead-like compounds retrieved from the 
ZINC database, we performed a pharmacophore screen 
based on pharmacophore models 1 and 2 independently. 
Among multiple subsets provided by ZINC, we chose the 
lead-like subset, not the drug-like set, because we aimed to 
provide a list of potential hits that could be optimized further 
by other groups, as well as our group. 

As a result, 400,153 and 290,742 hits fulfilled the features 
of models 1 and 2, respectively. The intersection of the two 
lists of hits, which fulfilled all features of both models, 
consisted of 38,087 compounds. To remove structurally 
similar compounds, we clustered the 38,087 hits by 
hierarchical clustering, based on the Tanimoto distance in 
PubChem Fingerprint. According to the result of the 
clustering, we ruled out redundant compounds that had 
similar compounds (Tanimoto coefficient ＞0.8). Thus, 
1,338 hits eventually remained as potential inhibitors of 
APE1. 

We carried out molecular docking of the hits against APE1 
to prioritize the hits using AutoDock Vina. Fig. 6 depicts the 
distribution of the predicted binding energies of the hits of 
the pharmacophore screen by docking. After molecular 
docking, we did not filter out compounds based on a 
particular threshold of the predicted value of the binding 
affinity but instead provide the top 10 hits in Fig. 7, their 
predicted binding poses in Supplementary Fig. 1, and all of 
the hits in Supplementary Table 1. This is because although 
Shityakov and Förster [25] reported that a compound having 
a binding affinity predicted by AutoDock Vina of lower than 
‒6 kcal/mol could be considered an active hit, the values are 
only predictive and rely on a somewhat empirical energy 

function. In other words, predicted binding affinities should 
be used restrictedly to help those who want to validate hits 
to determine the priority of subjects of an assay. Fig. 8 shows 
the alignments of the best hits into each pharmacophore 
model; all of the hits map well to the pharmacophore 
models. Of note, the rank of the docking results does not 
mean pharmacophore fitness, and all of the inhibitor 
compounds we found here can be mapped to the models 
well. The figure of pharmacophore alignment was made to 
provide an example showing that our hits can be mapped 
properly. 

In summary, we screened more than 3 million lead-like 
compounds by pharmacophore modeling, and 1,338 hits 
were suggested to be potential inhibitors of APE1. However, 
this work has a limitation, due to the lack of experimental 
validation. Nevertheless, the list of hits in this work could 
reduce the time and cost of researchers who want to develop 
novel anticancer drugs inhibiting the activity of APE1, since 
we prioritized candidates of the experiments and since all of 
them have lead-like properties, which means that the hits are 
appropriate for further optimization and development into 
drugs. 

Currently, there are several approaches that apply hits 
from a pharmacophore screen for further development in to 
a novel drug. Fei et al. [26] first developed a pharmacophore 
model of a drug target, like our method; then, 3D-quan-
titative structure-activity relationship (QSAR) modeling 
was used for validation and further virtual screening. Wieder 
et al. [27] proposed a novel approach combining pharmaco-
phore modeling and molecular dynamics (MD) simulations, 
and they showed that their methods were likely to result in 
more robust hits. Like these approaches, the results from 
pharmacophore modeling could be adopted in other in silico 
methods, such as molecular docking, QSAR modeling, and 
MD simulation. It is worth combining these methods and 
our results to get more robust results. If further integrative 
approaches and in vitro or vivo assays of hits validate our 
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results, our method could be applied to other drug targets, in 
addition to APE1. 
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