• 제목/요약/키워드: Drug storage

검색결과 204건 처리시간 0.029초

Perception of Food Safety and Risk of Foodborne Illness with Consumption of Meat and Processed Meat Products (식육 및 식육가공품 섭취에 따른 안전성 및 식중독 위험성 인식)

  • Choi, So Jeong;Park, Jin Hwa;Kim, Han Sol;Cho, Joon Il;Joo, In Sun;Kwak, Hyo Sun;Heo, Jin Jae;Yoon, Ki Sun
    • Korean journal of food and cookery science
    • /
    • 제32권4호
    • /
    • pp.476-491
    • /
    • 2016
  • Purpose: This study investigated consumers' perception of food safety and risk from foodborne illness and consumption pattern of meat and processed meat products in Korea. Methods: A quantitative survey was performed by trained interviewers, surveying 1,500 adults who were randomly selected from six major provinces in Korea. Results: Most of the respondents reported foodborne illness risk related to the consumption of raw meat but not related to heated meat and processed meat products. As respondents perceived the risk of food poisoning from raw meat, the purchase and intake decreased (p<0.001). Most of the respondents considered a low possibility of foodborne illness at home. Seventy-seven percent of the respondents thought that bacteria and virus are the main causes of foodborne illness. Improper storage practice (40.7%) and unsafe food material (29.3%) were the main risk factors contributing to foodborne illness. Perception and practice of food safety was significantly different by the residency area. The most preferred meat, processed meat, and processed ground meat products were pork (58%), ham (31.1%), and pork cutlet (40.4%), respectively. The most preferred cooking method was roasting, regardless of the type of meat, but the second preference for cooking method was significantly affected by the type of meat (p<0.001): stir-fried pork, beef with seasoning, fried-chicken and boiled duck. Frequency of eating out was 0.75/day on weekdays and 0.78/day on weekends at the mainly Korean BBQ restaurant. Conclusion: The results of this study could be used to develop science-based education materials for consumer and the specific guideline of risk management of meat and processed meat products.

Ex Vivo Permeability Characteristics of Porcine Buccal Mucosa to Drugs with Various Polarity

  • Lee, Jae-Hwi;Lee, Yoon-Jin;Yoon, Mi-Kyeong;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • 제35권2호
    • /
    • pp.71-74
    • /
    • 2005
  • The aim of this study was to analyze characteristics of the barrier function of excised porcine buccal mucosa to the test compounds, estradiol, propranolol HCI, melatonin, and mannitol with a wide range of partition coefficient values. The permeability of melatonin was measured through frozen, stored, and fresh porcine buccal mucosa to examine the impact of storage conditions on the permeability of porcine buccal mucosa. The results demonstrated that the ex vivo permeability of the porcine buccal mucosa was greater for more lipophilic solutes, which was consistent with a series of molecules transported by passive transepithelial diffusion. The melatonin permeation profiles through frozen, stored, and fresh mucosa illustrated that damage was incurred by the freezing process of the mucosal tissue, leading to loss of the barrier function and thereby an increased permeation coefficient. It can be observed that the influence of compound lipophilicity on the association of the compounds with buccal mucosa was clear. The relationship between permeation coefficient and Log P values for the four compounds investigated demonstrated a proportional relationship, further confirming the importance of the lipophilicity of a compound to permeate the buccal mucosa. These results showed that the ex vivo porcine buccal mucosa model is a suitable tool to screen oral mucosal permeability.

Preparation and Reconstitution of Core-shell Type Nanoparticles of Poly(ε -caprolactone)/Poly(ethyleneglycol)/Poly(ε -caprolactone) Triblock Copolymers

  • Jeong, Young-Il;Ryu, Jae-Gon;Kim, Young-Hoon;Kim, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권6호
    • /
    • pp.872-879
    • /
    • 2002
  • One of the improtant characteristics of core-shell type nanoparticles is the long-term storage and reuse as an aqueous injection solution when required. For this reason, reconstruction of lyophilized core-shell type nanoparticles is considered to be essential . BAB type triblock copolymers differ from AB type diblock copolymers, which contain the A block as a hydrophilic part and the B block as a hydrophobic part. by not being easily redistributed into phosphate-buffered saline (PBS, pH 7.4, 0.1 M). Therefore, lyophilized core-shell type nanoparticles of CEC triblock copolymer were reconstituted using a somication process with a bar-type sonicator in combination with a freezing-thawing process. Soncation for 30s only resuspended CEC nanoparticles in PBS; their particle size distribution showed a monomodal pattern with narrow size distribution. The bimodal size distribution pattern and the aggregates were reduced by further sonication for 120 s but these nanoparticles showed a wide size distribution. The initial burst of drug release was increased by reconstitution process. The reconstitution of CEC core-shell type nanoparticles by freezing-thawing resulted in trimodal distribution pattern and formed aggregates, although freezing-thawing process was easier than sonication . Drug release form CEC nanoparticles prepared by freezing-thawing was slower than from the original dialysis solution. Although core-shell typenanoparticles of CEC triblock copolymers were not easily performed. Cytotoxicity testing of core-shell type nanoparticles of CEC-2 triblock copolymers containing clonazepam (CNZ) was performed using L929 cells. Cytotoxicity of CNZ was decreased by incorporation into nanoparticles.

Use of Glucose Oxidase Immobilized on Magnetic Chitosan Nanoparticles in Probiotic Drinking Yogurt

  • Ali Afjeh, Maryam Ein;Pourahmad, Rezvan;Akbari-adergani, Behrouz;Azin, Mehrdad
    • Food Science of Animal Resources
    • /
    • 제39권1호
    • /
    • pp.73-83
    • /
    • 2019
  • The aim of this study was to investigate the effect of glucose oxidase (GOX) immobilized on magnetic chitosan nanoparticles (MCNP) on the viability of probiotic bacteria and the physico-chemical properties of drinking yogurt. Different concentrations (0, 250, and 500 mg/kg) of free and immobilized GOX were used in probiotic drinking yogurt samples. The samples were stored at $4^{\circ}C$ for 21 d. During storage, reduction of the number of probiotic bacteria in the samples with enzyme was lower than the control sample (without enzyme). The sample containing 500 mg/kg immobilized enzyme had the highest number of Bifidobacterium lactis and Lactobacillus acidophilus. The samples containing immobilized enzyme had lower acidity than other samples. Moreover, moderate proteolytic activity and enough contents of flavor compounds were observed in these samples. It can be concluded that use of immobilized GOX is economically more feasible because of improving the viability of probiotic bacteria and the physico-chemical characteristics of drinking yogurt.

Kinetic Modeling for Predicting the Quality of Squid (Todarodes pacificus) during Storage and Distribution (저장유통 조건에 따른 오징어 품질예측 모델링)

  • Kim, So-i;Shin, Jiyoung;Kim, Hyunsuk;Yang, Ji-young
    • Journal of Food Hygiene and Safety
    • /
    • 제37권3호
    • /
    • pp.173-180
    • /
    • 2022
  • There are a number of methods to evaluate the quality of squid. However, when purchasing the fish, consumers and retails rely only on the sensory test and flavor in the field. Therefore, this study was aimed to prove relationship between scientific indicator and sensory test. Total viable cell count (TVC), viable cell count of Pseudomonas spp., pH and volatile basic nitrogen (VBN) were selected as scientific indicators and mesured during the storage of squid at different temperature. The squid was storaged at 3 different temperature (5℃, 15℃, 20℃). Off flavor determination time was measured by R-index, and kinetic modeling was conducted. Activation energies of off-flavor determination time, TVC, Pseudomonas spp, VBN, and pH were 51.210 kJ/mol, 42.88 kJ/mol, 50.283 kJ/mol, 72.594 kJ/mol and 41.99 kJ/mol respectively. Activation energy of off-flavor determination time was approximated to viable cell count of Pseudomonas spp., TVC, pH and VBN as an order. Especially, viable cell count of Pseudomonas spp. had best match of the activation energy. Therefore, it was judged that indicator of off-flavor determine time was viable cell count of Pseudomonas spp..

Changes in Quality of Expired Tofu During Storage at Different Temperatures (유통기한이 경과된 포장두부의 저장온도에 따른 품질변화)

  • Kim, Su-jin;Kim, Se-Hun;Bang, Woo-Suk
    • Journal of Food Hygiene and Safety
    • /
    • 제37권2호
    • /
    • pp.80-86
    • /
    • 2022
  • The purpose of this study was to examine the microbiological and physicochemical changes on packaged tofu stored at temperatures of 5, 13, 23, and 30℃, and measure the consumable period from the expiry date to ultimately evaluate the microbiological safety on the extension of the consumable period. From the investigation, the pH value of tofu at each storage temperature (5, 13, and 23℃) showed a slight decrease over the storage period, although there was no significant change. The hardness of packaged tofu decreased more rapidly as temperature and storage time increased and the tofu started to show signs of decomposition at the same time. Analysis on the microbial change of tofu at different storage temperature revealed that the number of general bacteria also increased as the temperature increased. It was further found that packaged tofu takes 25 days at 5℃, 7 days at 13℃, and 1 day at 23℃ from the expiry date until the general bacteria count is at least at the early decomposition level which is 10℃ log CFU/g. However, no coliform bacteria was detected from tofu after storing at 5, 13 and 23℃. When packaged tofu was stored at 5℃, the L value changed significantly after 26 days, whereas the a and b values showed no significant change during the storage period (P>0.05). When storing tofu at 13℃ and 23℃ the L value decreased after 8 and 3 days, respectively. However, both a and b values increased (P<0.05).

Preparation and Evaluation of Mutivitamin Emulsion (복합비타민 유제의 제조와 평가)

  • Lee, Moon-Seok;Cho, Hea-Young;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • 제32권1호
    • /
    • pp.13-19
    • /
    • 2002
  • Water-lipid soluble multivitamin formulations were widely used to reduce the disease and stress of animals as husbandry has made a remarkable progress in recent. But the efficiency of these formulations is far from satisfactory. So, this study was attempted to develop the physically and chemically stable and useful multivitamin o/w emulsion. Multivitamin o/w emulsion composed of water, soybean oil (10%, v/v), vitamin A, D, E, K, $B_2,\;B_6,\;B_{12}$ and panthenol. To make a stable o/w emulsion, the egg lecithin (2%, w/v) and glycerin (2.5%, w/v) were used for emulsifier and thickening agent, respectively. The oil in water emulsion system was manufactured by microfluidizer and the physicochemical stability of this emulsion was evaluated. The average particle size and interfacial tension were measured. From the result of interfacial tension tested, critical micelle concentration of the egg lecithin was 0.5% (w/v) and optimal concentration for the preparation of emulsion was 2% (w/v). The mean particle size was about $0.6\;{\mu}m$ which was suitable for injections. Short-term accelerated stability as physical stability study was tested by centrifuging and freeze-thawing the emulsion samples. The additions of vitamins resulted in the increment of particle size and reduction of physical stability of emulsion. But it is not an enormous problem for the stability of emulsion. Also, we have performed the long-period preservation stability test for the vitamins. All vitamins were analysed by HPLC. The result of storage under $4^{\circ}C$ and dark conditions demonstrated that all vitamins were maintained stable at least 16 weeks, except for vitamin $B_{12}$.

Quality and sensory characteristics of commercial kimchi according to sodium contents (나트륨 함량에 따른 시판 배추김치의 품질과 관능적 특성)

  • Hwang, Eun-Sun;Kim, Hyo Sung;Kim, Soo Hyun;Ko, Hyun Joo;Lee, Mi Young;Yoon, Eun-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • 제48권5호
    • /
    • pp.413-417
    • /
    • 2016
  • This study was conducted to compare the quality and sensory characteristics of commercial kimchi containing different sodium contents. The salinity at day 1 post-manufacture in regular kimchi was 1.99%, while it was 1.56% in lowsodium kimchi, thus showing a 21.6% reduction in sodium content. The pH of low-sodium kimchi was much lower than that of regular kimchi and the pH was dramatically decreased in both samples after 5 days of storage. The total acidity of low-sodium kimchi was higher than that of the regular kimchi, and increased during the storage period. The number of lactic acid bacteria was maximum at day 5 but slightly decreased after 10 days of storage. The sensory evaluation panels preferred low-sodium kimchi and realized that the saltiness of low-sodium kimchi was less than that of the regular kind. Based on these results, the quality characteristics of low-sodium kimchi were competitive to those of regular kimchi.

Role of Kupffer Cells in Cold/warm Ischemia-Reperfusion Injury or Rat Liver

  • Lee, Young-Goo;Lee, Sang-Ho;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • 제23권6호
    • /
    • pp.620-625
    • /
    • 2000
  • The mechanisms of liver injury from cold storage and reperfusion are not completely under-stood. The aim of the present study was to investigate whether the inactivation of Kupffer cells (KCs) by gadolinium chloride ($GdCl_3$) modulates ischemia-reperfusion injury in the rat liver. Hepatic function was assessed using an isolated perfused rat liver model. In livers subjected to cold storage at $4^{\circ}C$ in University of Wisconsin solution for 24 hrs and to 20 min rewarm-ing ischemia, oxygen uptake was markedly decreased, Kupffer cell phagocytosis was stimulated, releases of purine nucleoside phosphorylase and lactate dehydrogenase were increased as compared with control livers. Pretreatment of rats with $GdCl_3$) , a selective KC toxicant, suppressed kupffer cell activity, and reduced the grade of hepatic injury induced by ischemia-reperfusion. While the initial mixed function oxidation of 7-ethoxycoumarin was not different from that found in the control livers, the subsequent conjugation of its meta-bolite to sulfate and glucuronide esters was suppressed by ischemia-reperfusion, CdCl$_3$restored sulfation and glucuronidation capacities to the level of the control liver. Our findings suggest that Kupffer cells could play an important role in cold/warm ischemia-reperfusion hepatic injury.

  • PDF

Gibberellins enhance plant growth and ginsenoside content in Panax ginseng

  • Hong, Chang Pyo;Jang, Gwi Yeong;Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • 제48권3호
    • /
    • pp.186-192
    • /
    • 2021
  • The roots of Korean ginseng (Panax ginseng) have a long history of usage as a medicinal drug. Ginsenosides, a group of triterpenioid saponins in ginseng, have been reported to show important pharmacological effects. Many studies have attempted to identify the ginsenoside synthesis pathways of P. ginseng and to increase crop productivity. Recent studies have shown that exogenous gibberellin (GA) treatments promote storage root secondary growth by integration of the modulating cambium stem cell homeostasis with a secondary cell wall-related gene network. However, the dynamic regulation of ginsenoside synthesis-related genes and their contents by external signaling cues has been rarely evaluated. In this study, we confirmed that GA treatment not only enhanced the secondary growth of P. ginseng storage roots, but also significantly enriched the terpenoid biosynthesis process in RNA-seq analysis. Consistently, we also found that the expression of most genes involved in the ginsenoside synthesis pathways, including those encoding methylerythritol-4-phosphate (MEP) and mevalonate (MVA), and the saponin content in both leaves and roots was increased by exogenous GA application. These results can be used in future development of biotechnology for ginseng breeding and enhancement of saponin content.