• 제목/요약/키워드: Drug resistance-related genes

검색결과 30건 처리시간 0.027초

개와 고양이에서 분리된 Enterobacteriaceae와 Pseudomonas aeruginosa의 항균제 내성 및 내성 유전자의 분포 (Antimicrobial resistance and distribution of resistance gene in Enterobacteriaceae and Pseudomonas aeruginosa isolated from dogs and cats)

  • 조재근;김진현;김정미;박최규;김기석
    • 한국동물위생학회지
    • /
    • 제36권3호
    • /
    • pp.171-180
    • /
    • 2013
  • This study was carried out to investigate the antimicrobial resistance pattern and distribution of resistance gene in 44 Enterobacteriaceae and 21 Pseudomonas (P) aeruginosa isolated from hospitalized dogs and cats in animal hospital from 2010 to 2011 in Daegu. Among Enterobacteriaceae, Escherichia (E) coli was highly resistant to ampicillin (56.7%), followed by tetracycline (53.3%), cephalothin, streptomycine, sulfamethoxazole/trimethoprim, gentamicin and norfloxacin (40.0~43.3%). The remaining isolates of Enterobacteriaceae had high resistance to ampicillin (64.3%) and streptomycin (42.9%). Whereas, P. aeruginosa was low resistant to all antimicrobials tested (less than 15%). int I 1 gene was detected in 20 (57.1%) of 35 antimicrobial resistant Enterobacteriaceae and 2 (9.5%) of 21 P. aeruginosa., but int I 2 gene was not detected in all isolates. The eight resistance genes were found either alone or combination with other gene (s): $bla_{TEM}$, aadA, strA-strB, clmA, tetA, tetB, sul I and sul II. About 78% of integron-positive isolates were resistance to more than four antimicrobial agents. The findings suggest that class I integrons are widely distributed in E. coli among Enterobacteriaceae from dogs and cats and multi-drug resistance related to the presence of class I integrons. The prudent use of antimicrobials and continuous monitoring for companion animals are required.

항암제 내성 L1210세포의 Glutathione 대사 관련효소 유전자의 발현 양상 (Gene Expression of Enzymes Related to Glutathione Metabolism in Anticancer Drug-resistant L1210 Sublines)

  • 김성용;김재룡;김정희
    • Journal of Yeungnam Medical Science
    • /
    • 제12권1호
    • /
    • pp.32-47
    • /
    • 1995
  • 생쥐의 백혈병세포 L1210과 항암제에 대하여 내성이 유도된 L1210AdR, L1210VcR과 L1210Cis에서 glutathione의 농도와 glutathione의 합성 조절에 관여하는 ${\gamma}$-glutamylcysteine synthetase(GCS)와 ${\gamma}$-glutamyl transpeptidase (GGT), 세포 이물질을 축합하는데 촉매하는 glutathione S-transferase(GST)의 효소 활성도와 유전자의 발현 여부를 관찰하였다. 세포내 glutathione농도(${\mu}M/mg$ protein)는 L1210이 $0.41{\pm}0.003$, L1210AdR가 $0.73{\pm}0.006$, L1210VcR은 $1.16{\pm}0.060$, L1210Cis가 $2.19{\pm}0.282$으로 모세포에 비하여 내성세포에서 통계적으로 유의한 증가를 관찰하였다. Buthionine sulfoxamine(BSO)를 1 ${\mu}M$농도로 첨가하여 12시간 배양한 세포들에서의 glutathione농도는 L1210이 88%, L1210AdR가 85%, L1210VcR이 89%, 그리고 L1210Cis는 79%의 감소를 보였다. GCS의 활성도(nM/mg protein/min)는 L1210이 104인데 비하여 L1210AdR가 128, L1210VcR는 227, 및 L1210Cis는 212로 증가하였다. GGT의 활성도(nM/mg protein/min)는 L1210이 $2.15{\pm}0.531$이었고, L1210AdR은 $2.80{\pm}0.498$, L1210VcR은 $2.42{\pm}0.389$, 그리고 L1210Cis는 $2.98{\pm}0.623$으로 내성인 세포들에서 증가하였으며 L1210AdR과 L1210Cis에서 유의하였다. GST활성도(nM/mg protein/min)는 L1210이 $16.70{\pm}4.798$이었고, L1210AdR은 $14.51{\pm}3.402$, L1210VcR은 $19.52{\pm}4.255$, L1210Cis $17.77{\pm}4.495$로 L1210VcR과 L1210Cis가 약간의 증가를 보였으며, L1210AdR은 오히려 감소를 보였다. DNA의 slot blot에서 GCS, GGT, GST 유전자의 모세포와 내성세포간에 별다른 차이를 보이지 않았다. Northern hybridization에서 GCS는 약 4.5kb 크기의 band, GST-${\pi}$는 약 1.05kb 크기의 band를 보였으며 내성세포 모두에서 발현 증가가 관찰되었다. GGT의 경우 크기가 다른 6개의 band가 보였으며 특히 11.5 kb크기의 band에서 L1210AdR과 L1 210VcR의 발현이 증가하였으며, L1210VcR에서는 L1210과 다른 내성세포에서 보이는 1.95kb크기의 band가 보이지 않고 2.2kb 크기의 다른 band가 관찰되었다. 이상에서 L1210AdR과 L1210VcR의 내성에는 mdr1 유전자가 관여하고, L1210Cis의 내성에는 특히 glutathione이 중요하다. GCS, GGT 및 GST등의 활성도 및 유전자의 발현도 내성세포들에서 증가하였으며 이중 GCS는 내성세포내의 glutathione 합성에 가장 중요한 조절인자라 할 수 있다.

  • PDF

Mutations in Streptomycin Resistance Genes and Their Relationship to Streptomycin Resistance and Lineage of Mycobacterium tuberculosis Thai Isolates

  • Hlaing, Yin Moe;Tongtawe, Pongsri;Tapchaisri, Pramuan;Thanongsaksrikul, Jeeraphong;Thawornwan, Unchana;Archanachan, Buppa;Srimanote, Potjanee
    • Tuberculosis and Respiratory Diseases
    • /
    • 제80권2호
    • /
    • pp.159-168
    • /
    • 2017
  • Background: Streptomycin (SM) is recommended by the World Health Organization (WHO) as a part of standard regimens for retreating multidrug-resistant tuberculosis (MDR-TB) cases. The incidence of MDR-TB in retreatment cases was 19% in Thailand. To date, information on SM resistance (SMR) gene mutations correlated to the SMR of Mycobacterium tuberculosis Thai isolates is limited. In this study, the mutations in rpsL, rrs, gidB, and whiB7 were investigated and their association to SMR and the lineage of M. tuberculosis were explored. Methods: The lineages of 287 M. tuberculosis collected from 2007 to 2011 were identified by spoligotyping. Drug susceptibility profiles were evaluated by the absolute concentration method. Mutations in SMR genes of 46 SM-resistant and 55 SM-susceptible isolates were examined by DNA sequencing. Results: Three rpsL (Lys43Arg, Lys88Arg, and Lys88Thr) and two gidB (Trp45Ter and Gly69Asp) mutations were present exclusively in the SM resistant M. tuberculosis. Lys43Arg rpsL was the most predominant SMR mutations (69.6%) and prevailed among Beijing isolates (p<0.001). No SMR-related mutation in was found rrs. The combination of rpsL and gidB mutations provided 76.1% sensitivity for detecting SMR in M. tuberculosis Thai isolates. whiB7 was not responsible for SMR in SM resistant isolates lacking rpsL and rrs mutations. The significance of the three gidB mutations, 276A>C, 615A>G, and 330G>T, as lineage signatures for Beijing and EAI were underscored. This study identified 423G>A gidB as a novel sub-lineage marker for EAI6-BGD1. Conclusion: Our study suggested that the majority of SMR in M. tuberculosis Thai isolates were responsible by rpsL and gidB polymorphisms constantly providing the novel lineage specific makers.

비뇨생식기계 검체로부터 분리된 Ureaplasma 종의 Fluoroquinolone 내성과 관련된 gyrA, gyrB, parC, parE 유전자의 돌연변이 양상 (Mutation Patterns of gyrA, gyrB, parC and parE Genes Related to Fluoroquinolone Resistance in Ureaplasma Species Isolated from Urogenital Specimens)

  • 조은정;황유연;구본경;박제섭;김영권;김성현
    • 대한임상검사과학회지
    • /
    • 제48권2호
    • /
    • pp.74-81
    • /
    • 2016
  • Fluoroquinolone 계 항생제의 광범위한 사용으로 인해 이 약제에 대한 내성 Ureaplasma 종의 분리 비율이 높아지고 있다. Fluoroquinolone 계 항생제 내성은 주로 DNA gyrase와 topoisomerase IV 유전자의 돌연변이로 인해 발생하는 것으로 알려져 있다. DNA gyrase는 A와 B 2개의 소단위로 이루어져 있으며, gyrA와 gyrB 유전자에 의해 암호화되어 있고, Topoisomerase IV는 parC와 parE 유전자에 의해 암호화되어 있다. 본 연구가 진행된 서울의 1개 3차 병원에서 2012년부터 2013년까지 1년동안 Ureaplasma 종의 fluoroquinolone 계 항생제인 OFL과 CIP의 항생제검사 감수성 결과를 분석한 결과 내성과 중등도를 합산할 경우 66.08%, 92.69%로 매우 높은 내성 비율을 보였다. 이에 Ureaplasma 종을 OFL과 CIP에 대한 감수성을 기준으로 4개 그룹으로 분류하여 gyrA, gyrB, parC, parE 유전자의 돌연변이 여부를 검사하여 항생제 내성과의 관련성을 밝히고자 하였다. 그 중 parC 유전자의 돌연변이 빈도가 높아 topoisomerase IV의 돌연변이가 fluoroquinolone 계 약제에 대한 내성과 밀접한 관련이 있음을 확인할 수 있었다. 본 연구를 통해 GyrB의 Asn481Ser, ParC의 Phe149Leu, Asp150Met, Asp151Ile, Ser152Val, ParE의 Pro446Ser, Arg448Lys을 추가로 발견할 수 있었다. 최근 fluoroquinolone 계 항생제의 사용이 증가하고 있기 때문에 추후 Ureaplasma 종의 fluoroquinolone 계 항생제 내성에 대한 지속적인 모니터링이 필수적일 것으로 사료되며, 이와 관련한 유전자의 돌연변이 양상과의 상관관계를 분석하여 기존 배양검사의 단점을 보완할 수 있는 분자 진단학적 검사법의 추가적인 분석이 필요할 것으로 사료된다.

Comparative Phenotypic Analysis of Anabaena sp. PCC 7120 Mutants of Porin-like Genes

  • Schatzle, Hannah;Brouwer, Eva-Maria;Liebhart, Elisa;Stevanovic, Mara;Schleiff, Enrico
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권5호
    • /
    • pp.645-658
    • /
    • 2021
  • Porins are essential for the viability of Gram-negative bacteria. They ensure the uptake of nutrients, can be involved in the maintenance of outer membrane integrity and define the antibiotic or drug resistance of organisms. The function and structure of porins in proteobacteria is well described, while their function in photoautotrophic cyanobacteria has not been systematically explored. We compared the domain architecture of nine putative porins in the filamentous cyanobacterium Anabaena sp. PCC 7120 and analyzed the seven candidates with predicted OprB-domain. Single recombinant mutants of the seven genes were created and their growth capacity under different conditions was analyzed. Most of the putative porins seem to be involved in the transport of salt and copper, as respective mutants were resistant to elevated concentrations of these substances. In turn, only the mutant of alr2231 was less sensitive to elevated zinc concentrations, while mutants of alr0834, alr4741 and all4499 were resistant to high manganese concentrations. Notably the mutant of alr4550 shows a high sensitivity against harmful compounds, which is indicative for a function related to the maintenance of outer membrane integrity. Moreover, the mutant of all5191 exhibited a phenotype which suggests either a higher nitrate demand or an inefficient nitrogen fixation. The dependency of porin membrane insertion on Omp85 proteins was tested exemplarily for Alr4550, and an enhanced aggregation of Alr4550 was observed in two omp85 mutants. The comparative analysis of porin mutants suggests that the proteins in parts perform distinct functions related to envelope integrity and solute uptake.

Induction of Phase I, II and III Drug Metabolism/Transport by Xenobiotics

  • Xu Chang Jiang;Li Christina YongTao;Kong AhNg Tony
    • Archives of Pharmacal Research
    • /
    • 제28권3호
    • /
    • pp.249-268
    • /
    • 2005
  • Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt) , in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the ret-inoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fib rate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these GYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sul­foraphane) generally appear to be electrophiles. They generally possess electrophilic-medi­ated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and GAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular 'stress' response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other 'cellular stresses' including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the 'stress' expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against 'environmental' insults such as those elicited by exposure to xenobiotics.

Inhibition of HBV replication and gene expression in vitro and in vivo with a single AAV vector delivering two shRNA molecules

  • Li, Zhi;He, Ming-Liang;Yao, Hong;Dong, Qing-Ming;Chen, Yang-Chao;Chan, Chu-Yan;Zheng, Bo-Jian;Yuen, Kwok-Yung;Peng, Ying;Sun, Qiang;Yang, Xiao;Lin, Marie C.;Sung, Joseph J.Y.;Kung, Hsiang-Fu
    • BMB Reports
    • /
    • 제42권1호
    • /
    • pp.59-64
    • /
    • 2009
  • Hepatitis B virus (HBV) infection is highly prevalent worldwide. The major challenge for current antiviral treatment is the elevated drug resistance that occurs via rapid viral mutagenesis. In this study, we developed AAV vectors to simultaneously deliver two or three shRNAs targeting different HBV-related genes. These vectors showed markedly better antiviral effects than ones that delivered a single shRNA in vitro. A dual shRNA expression vector (AAV-157i/1694i), which simultaneously expressed two shRNAs targeted the S and X genes of HBV, reduced HBsAg, HBeAg and HBV DNA levels by $87{\pm}4$, $80.3{\pm}2.6$ and $86.2{\pm}7%$ respectively, eight days post-transduction. In a mouse model of prophylactic treatment, HBsAg and HBeAg were reduced to undetectable levels and the serum HBV DNA level was reduced by at least 100 fold. These results indicate that AAV-157i/1694i generates potent anti-HBV effects and that the strategy of constructing multi-shRNA expression vectors may lead to enhanced anti-HBV efficacy and overcome the evading mechanism of the virus and thus the development of drug resistance.

Impact of antimicrobial resistance in the $21^{st}$ century

  • Song, Jae-Hoon
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2000년도 Proceedings of 2000 KSAM International Symposium and Spring Meeting
    • /
    • pp.3-6
    • /
    • 2000
  • Antimicrobial resistance has been a well-recognized problem ever since the introduction of penicillin into clinical use. History of antimicrobial development can be categorized based on the major antibiotics that had been developed against emerging resistant $pathogens^1$. In the first period from 1940 to 1960, penicillin was a dominating antibiotic called as a "magic bullet", although S.aureus armed with penicillinase led antimicrobial era to the second period in 1960s and 1970s. The second stage was characterized by broad-spectrum penicillins and early generation cephalosporins. During this period, nosocomial infections due to gram-negative bacilli became more prevalent, while those caused by S.aureus declined. A variety of new antimicrobial agents with distinct mechanism of action including new generation cephalosporins, monobactams, carbapenems, ${\beta}$-lactamase inhibitors, and quinolones characterized the third period from 1980s to 1990s. However, extensive use of wide variety of antibiotics in the community and hospitals has fueled the crisis in emerging antimicrobial resistance. Newly appeared drug-resistant Streptococcus pneumoniae (DRSP), vancomycin-resistant enterococci (VRE), extended-spectrum ${\beta}$-lactamase-producing Klebsiella, and VRSA have posed a serious threat in many parts of the world. Given the recent epidemiology of antimicrobial resistance and its clinical impact, there is no greater challenge related to emerging infections than the emergence of antibiotic resistance. Problems of antimicrobial resistance can be amplified by the fact that resistant clones or genes can spread within or between the species as well as to geographically distant areas which leads to a global concern$^2$. Antimicrobial resistance is primarily generated and promoted by increased use of antimicrobial agents. Unfortunately, as many as 50 % of prescriptions for antibiotics are reported to be inappropriate$^3$. Injudicious use of antibiotics even for viral upper respiratory infections is a universal phenomenon in every part of the world. The use of large quantities of antibiotics in the animal health industry and farming is another major factor contributing to selection of antibiotic resistance. In addition to these background factors, the tremendous increase in the immunocompromised hosts, popular use of invasive medical interventions, and increase in travel and mixing of human populations are contributing to the resurgence and spread of antimicrobial resistance$^4$. Antimicrobial resistance has critical impact on modem medicine both in clinical and economic aspect. Patients with previously treatable infections may have fatal outcome due to therapeutic failure that is unusual event no more. The potential economic impact of antimicrobial resistance is actually uncountable. With the increase in the problems of resistant organisms in the 21st century, however, additional health care costs for this problem must be enormously increasing.

  • PDF

암종양유전자 SETDB1과 FosB 발현에 대한 p53의 음성 조절기작 (Negative Regulation of Tumor Suppressor p53 at the Promoter Regions of Oncogenic SETDB1 and FosB Genes)

  • 윤현지;나한흠;김근철
    • 생명과학회지
    • /
    • 제30권12호
    • /
    • pp.1070-1077
    • /
    • 2020
  • 암세포에 항암제를 처리하게 되면, 세포증식, 이동성 또는 약물 내성과 관련된 많은 유전자들의 발현 변화가 발생하며, 유전자 발현 변화는 상호간의 조절 네트워크에 의해 밀접하게 연결될 수도 있다고 추측된다. 본 연구에서 p53 유전자 유무가 다른 A549와 H1299 인간 폐암세포에 독소루비신을 처리하면, 원종양유전자인 FosB의 발현은 증가하지만, 원종양유전자인 SETDB1의 발현은 감소하지만, 단백질 발현의 양적인 차이가 발생한다는 사실을 알 수 있었다. TF motif binding 분석 프로그램을 이용하여 SETDB1과 FosB 프로모터지역에서의 p53단백질의 결합가능성을 분석한 결과, SETDB1의 경우 18부위, FosB의 경우 21 부위의 p53 결합부위를 예측할 수 있었다. SETDB1과 FosB 프로모터의 subcloning하여 luciferase 분석을 수행한 결과, p53은 SETDB1과 FosB을 음성적으로 조절한다는 사실을 알 수 있었다. 또한, H1299 세포에 p53의 과발현은 SETDB1 과 FosB의 발현을 감소시킬 수 있음을 RT-PCR, western blot, qPCR, 면역염색 실험을 통해 확인하였다. 이러한 결과를 종합하여 본다면, p53에 의한 SETDB1과 FosB 유전자 발현 조절은 항암제 처리과정에서 나타나는 암세포의 사멸과 생존에 대한 기능적 조절 네트워크로 사료된다.

Luteolin-loaded Phytosomes Sensitize Human Breast Carcinoma MDA-MB 231 Cells to Doxorubicin by Suppressing Nrf2 Mediated Signalling

  • Sabzichi, Mehdi;Hamishehkar, Hamed;Ramezani, Fatemeh;Sharifi, Simin;Tabasinezhad, Maryam;Pirouzpanah, Mohammadbagher;Ghanbari, Parisa;Samadi, Nasser
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권13호
    • /
    • pp.5311-5316
    • /
    • 2014
  • Nuclear factor erythroid 2-related factor 2 (Nrf2) has been recognized as a transcription factor that controls mechanisms of cellular defense response by regulation of three classes of genes, including endogenous antioxidants, phase II detoxifying enzymes and transporters. Previous studies have revealed roles of Nrf2 in resistance to chemotherapeutic agents and high level expression of Nrf2 has been found in many types of cancer. At physiological concentrations, luteolin as a flavonoid compound can inhibit Nrf2 and sensitize cancer cells to chemotherapeutic agents. We reported luteolin loaded in phytosomes as an advanced nanoparticle carrier sensitized MDA-MB 231 cells to doxorubicin. In this study, we prepared nano phytosomes of luteolin to enhance the bioavailability of luteolin and improve passive targeting in breast cancer cells. Our results showed that cotreatment of cells with nano particles containing luteolin and doxorubicin resulted in the highest percentage cell death in MDA-MB 231cells (p<0.05). Furthermore, luteolin-loaded nanoparticles reduced Nrf2 gene expression at the mRNA level in cells to a greater extent than luteolin alone (p<0.05). Similarly, expression of downstream genes for Nrf2 including Ho1 and MDR1 were reduced significantly (p<0.05). Inhibition of Nrf-2 expression caused a marked increase in cancer cell death (p<0.05). Taken together, these results suggest that phytosome technology can improve the efficacy of chemotherapy by overcoming resistance and enhancing permeability of cancer cells to chemical agents and may thus be considered as a potential delivery system to improve therapeutic protocols for cancer patients.