• Title/Summary/Keyword: Drug Distribution

Search Result 570, Processing Time 0.029 seconds

Study on production process of graphite for biological applications of 14C-accelerator mass spectrometry

  • Ha, Yeong Su;Kim, Kye-Ryung;Cho, Yong-Sub;Choe, Kyumin;Kang, Chaewon
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.1
    • /
    • pp.20-26
    • /
    • 2020
  • Accelerator mass spectrometry (AMS) is a powerful detection technique with the exquisite sensitivity and high precision compared with other traditional analytical techniques. Accelerator mass spectrometry can be widely applied in the technique of radiocarbon dating in the fields of archeology, geology and oceanography. The ability of accelerator mass spectrometry to measure rare 14C concentrations in microgram and even sub-microgram amounts suggests that extension of 14C-accelerator mass spectrometry to biomedical field is a natural and attractive application of the technology. Drug development processes are costly, risky, and time consuming. However, the use of 14C-accelerator mass spectrometry allows absorption, distribution, metabolism and excretion (ADME) studies easier to understand pharmacokinetics of drug candidates. Over the last few decades, accelerator mass spectrometry and its applications to preclinical/clinical trials have significantly increased. For accelerator mass spectrometry analysis of biological samples, graphitization processes of samples are important. In this paper, we present a detailed sample preparation procedure to apply to graphitization of biological samples for accelerator mass spectrometry.

Imperatorin is Transported through Blood-Brain Barrier by Carrier-Mediated Transporters

  • Tun, Temdara;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.441-451
    • /
    • 2017
  • Imperatorin, a major bioactive furanocoumarin with multifunctions, can be used for treating neurodegenerative diseases. In this study, we investigated the characteristics of imperatorin transport in the brain. Experiments of the present study were designed to study imperatorin transport across the blood-brain barrier both in vivo and in vitro. In vivo study was performed in rats using single intravenous injection and in situ carotid artery perfusion technique. Conditionally immortalized rat brain capillary endothelial cells were as an in vitro model of blood-brain barrier to examine the transport mechanism of imperatorin. Brain distribution volume of imperatorin was about 6 fold greater than that of sucrose, suggesting that the transport of imperatorin was through the blood-brain barrier in physiological state. Both in vivo and in vitro imperatorin transport studies demonstrated that imperatorin could be transported in a concentration-dependent manner with high affinity. Imperatorin uptake was dependent on proton gradient in an opposite direction. It was significantly reduced by pretreatment with sodium azide. However, its uptake was not inhibited by replacing extracellular sodium with potassium or N-methylglucamine. The uptake of imperatorin was inhibited by various cationic compounds, but not inhibited by TEA, choline and organic anion substances. Transfection of plasma membrane monoamine transporter, organic cation transporter 2 and organic cation/carnitine transporter 2/1 siRNA failed to alter imperatorin transport in brain capillary endothelial cells. Especially, tramadol, clonidine and pyrilamine inhibited the uptake of [$^3H$]imperatorin competitively. Therefore, imperatorin is actively transported from blood to brain across the blood-brain barrier by passive and carrier-mediated transporter.

Free-standing Three Dimensional Graphene Incorporated with Gold Nanoparticles as Novel Binder-free Electrochemical Sensor for Enhanced Glucose Detection

  • Bui, Quoc Bao;Nguyen, Dang Mao;Nguyen, Thi Mai Loan;Lee, Ku Kwac;Kim, Hong Gun;Ko, Sang Cheol;Jeong, Hun
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.229-237
    • /
    • 2018
  • The electrochemical sensing performance of metal-graphene hybrid based sensor may be significantly decreased due to the dissolution and aggregation of metal catalyst during operation. For the first time, we developed a novel large-area high quality three dimensional graphene foam-incorporated gold nanoparticles (3D-GF@Au) via chemical vapor deposition method and employed as free-standing electrocatalysis for non-enzymatic electrochemical glucose detection. 3D-GF@Au based sensor is capable to detect glucose with a wide linear detection range of $2.5{\mu}M$ to 11.6 mM, remarkable low detection limit of $1{\mu}M$, high selectivity, and good stability. This was resulted from enhanced electrochemical active sites and charge transfer possibility due to the stable and uniform distribution of Au NPs along with the enhanced interactions between Au and GF. The obtained results indicated that 3D-GF@Au hybrid can be expected as a high quality candidate for non-enzymatic glucose sensor application.

Simultaneous Determination of Asperosaponins and Iridoid Glycosides from Dipsaci Radix by Using LC-ESI-MS Spectrometry (속단(Dipsaci Radix) 중 Asperosaponins 및 Iridoid glycosides의 LC-ESI-MS에 의한 동시분석)

  • Cho, Hwang-Eui;Son, In-Seop;Kim, Sun-Cheun;Son, Kun-Ho;Woo, Mi-Hee;Moon, Dong-Cheul
    • Korean Journal of Pharmacognosy
    • /
    • v.43 no.2
    • /
    • pp.137-146
    • /
    • 2012
  • Dipsaci Radix (Dipsacaceae) has been used as a tonic, an analgesic, anti-inflammatory and anti-complement agents in traditional herbal medicine for the therapy of low back pain, knee pain, rheumatic arthritis, traumatic hematoma, and bone fractures. A high-performance liquid chromatography-electrospray ionization-mass spectrometric method (HPLC-ESI-MS) was developed for the simultaneous quantitation method of the five compounds from the herbal drug: asperosaponin VI and asperosaponin XII (terpene glycosides), sweroside, loganin and dipsacus A(iridoid glycosides). HPLC separation of the analytes was achieved on a C18 column ($150{\times}2.0$ mm i.d., 5 ${\mu}m$) using the aqueous methanol containing 5 mM ammonium acetate with gradient flow of the mobile phase. Detection of the analytes was performed by positive ion electrospray ionization, and selected ion monitoring was used for data acquisition using m/z corresponding molecular adduct ion, $[M+NH_4]^+$ and $[M+H]^+$. Calibration graphs showed good linearity ($r^2$=0.9997) over the wide range of the analytes; intra- and inter-day precisions (RSD, %) were within 9.1% and the accuracy between 94.0-111.0%. Recoveries of the analytes through the assay procedure were in the range of 93.7-110.8%. Analytical results of the herbal drugs of Dipsaci Radix (17 samples) show wide distribution of the five marker compounds and clear difference of the species from Phlomidis Radix (4 samples). The developed method would provide a practical guide for the quality control of the herbal drug.

Cytotoxicity, Stability and Antitumor Activity of 5-Fluorouracil Prodrugs Entrapped in Liposomes (리포좀에 봉입한 5-플루오로우라실 프로드럭의 세포독성, 안정성 및 항암효과)

  • Lee, Gye-Won;Ji, Ung-Gil
    • YAKHAK HOEJI
    • /
    • v.40 no.5
    • /
    • pp.522-531
    • /
    • 1996
  • 5-fluorouracil(5-FU) derivatives synthesized with four N-acyloxycarbonyl group such as 1-(N-t-butyloxycarbonyl)glycyloxymethyl-5-FU(BGFU), 1-(N-t-butyloxycarbonyl)leucyloxymethy l-5-FU(BLFU), 1-(N-t-carbobenzyloxymethyl)glycyoxymethyl-5-FU(CGFU) and 1-(N-t-carbobenzyloxymethyl)leucyloxymethyl-5-FU(CLFU) were entrapped into liposomes with different lipid compositions. The entrapment efficiency and release rate of drugs from each liposomes were evaluated. The particle size of liposomes, cytotoxicity and stability of drug-entrapped in liposomes were evaluated. The entrapment efficiency in 5-FU derivatives liposomes was dependent on the lipophilicity of N-acyloxymethyl derivatives. The drug entrapment efficiency also increased on the content of lipid increased up to 200mcmol of lipid per milliliter of liposomal solution. However, inclusion of additives such as cholesterol, dicetylphosphate and stearylamine decreased the entrapment efficiency. The mean particle size and size distribution were varied with lipid compositions and lipophilicity of prodrugs. The release rates of drugs from liposomes were not affected by additives, but those of BGFU and CGFU entrapped in liposomes with cholesterol decreased. Cytotoxicity of BLFU and CLFU entrapped in liposomes decreased by 3~5 fold compared with those of free two prodrugs. Liposome-entrapped 5-FU prodrugs were more stable either at pH 7.4 or in human plasma. Especially, 5-FU prodrugs entrapped in liposome with dipalmitoylphosphatidylcholine(DMPC) was the most stable in human plasma. Compared with free BLFU, BLFU entrapped in DMPC liposome showed a superior antitumor activity at all doses used. In contrast, CLFU entapped in liposomes were more toxic than free prodrug.

  • PDF

Permeability of a Capsaicin Derivative $[{14}^C]DA-5018$ to Blood-Brain Barrier Corrected with HPLC Method

  • Kang, Young-Sook;Kim, Jong-Mi
    • Archives of Pharmacal Research
    • /
    • v.22 no.2
    • /
    • pp.165-172
    • /
    • 1999
  • In the present work , the transport mechanism of a capsaicin derivative, DA-5018, through blood-brain barrier (BBB) has been investigated to evaluate the feasibility of potential drug development. The result of pharmacokinetic parameters obtained from the intravenous injection of plasma volume marker,$[3^H]RSA$ and $[{14}^C]DA-5018$, indicated that both AUC, area under the plasma concentration curve and VD, volume of distribution in brain of $[3^H]RSA$ agreed with those reported ($1620{\pm}10 $percentage injected dose minute per milliliter (%IDmin/ml) and $12.0{\pm}0.1{\mu}l/g$, respectively). Elimination half-life and AUC of $[{14}^C]DA-5018$is corrected by the PHLC analysis, 19.6$\pm$1.2 min and 7.69$\pm$0.85% IDmin/ml, respectively. The metabolic rate of $[{14}^C]DA-5018$was very rapid. The blood-brain barrier permeability surface area (PS) product of $[{14}^C]DA-5018$ was calculated to be 0.24$\pm$0.05 $\mu$l/min/g. The result of internal carotid artery perfusion and capillary depletion suggested that [14C]DA-5018 pass through BBB with the time increasingly. Investigation of transport mechanism of $[{14}^C]DA-5018$ using agonist and antagonist suggested that vanilloid (capsaicin) receptor did not exist in the BBB, and nutrient carrier system in the BBB has no effect on the transport of DA-5018. In conclusion, despite the fact that penetration of DA-5018 through BBB is significant, the intact drug found in the brain tissue is small because of a rapid metabolism. Therefore, for the central analgesic effect of DA-5018, the method to increase the metabolic stability in plasma and the brain permeability should be considered.

  • PDF

Pharmacokinetic-Pharmacodynamic Modeling for the Relationship between Glucose-Lowering Effect and Plasma Concentration of Metformin in Volunteers

  • Lee, Shin-Hwa;Kwon, Kwang-il
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.806-810
    • /
    • 2004
  • Metformin is a biguanide antihyperglycemic agent often used for the treatment of non-insulin dependent diabetics (NIDDM). In this study, the pharmacokinetics and pharmacodynamics of metformin were investigated in Korean healthy volunteers during a fasting state for over 10 h. In order to evaluate the amount of glucose-lowering effect of metformin, the plasma concentrations of glucose were measured for a period of 10 h followed by the administration of metformin (oral 500 mg) or placebo. In addition, the concentration of metformin in blood samples was determined by HPLC assay for the drug. All volunteers were consumed with 12 g of white sugar 10 minutes after drug intake to maintain initial plasma glucose concentration. The time courses of the plasma concentration of metformin and the glucose-lowering effect were analyzed by nonlinear regression analysis. The estimated $C_{max}$, $T_{max}$, $CL_{t}$/F (apparent clearance), V/F(apparent volume of distribution), and half-life of metformin were 1.42$\{pm}$0.07 $\mu\textrm{g}$/mL, 2.59$\{pm}$0.18h, 66.12$\{pm}$4.6 L/h, 26.63 L, and 1.54 h respectively. Since a significant counterclock-wise hysteresis was found for the metformin concentration in the plasma-effect relationship, indirect response model was used to evaluate pharmacodynamic parameters for metformin. The mean concentration at half-maximum inhibition $IC_{50}$, $k_{in}$, $k_{out}$ were 2.26 $\mu\textrm{g}$/mL, 83.26 $H^{-1}$, and 0.68 $H^{-1}$, respectively. Therefore, the pharmacokinetic-pharmacodynamic model may be useful in the description for the relationship between plasma concentration of metformin and its glucose-lowering effect.

Liquid chromatography-tandem mass spectrometric analysis of oleracone D and its application to pharmacokinetic study in mice

  • Lim, Dong Yu;Lee, Tae Yeon;Lee, Jaehyeok;Song, Im-Sook;Han, Young Taek;Choi, Min-Koo
    • Analytical Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.193-201
    • /
    • 2021
  • We have demonstrated a sensitive analytical method of measuring oleracone D in mouse plasma using a liquid chromatography-tandem mass spectrometry (LC-MS/MS). Oleracone D and oleracone F (internal standard) in mouse plasma samples were processed using a liquid-liquid extraction method with methyl tertbutyl ether, resulting in high and reproducible extraction recovery (80.19-82.49 %). No interfering peaks around the peak elution time of oleracone D and oleracone F were observed. The standard calibration curves for oleracone D ranged from 0.5 to 100 ng/mL and were linear with r2 of 0.992. The inter- and intra-day accuracy and precision and the stability fell within the acceptance criteria. The pharmacokinetics of oleracone D following intravenous and oral administration of oleracone D at doses of 5 mg/kg and 30 mg/kg, respectively, were investigated. When oleracone D was intravenously injected, it had first-order elimination kinetics with high clearance and volume of distribution values. The absolute oral bioavailability of this compound was calculated as 0.95 %, with multi-exponential kinetics. The low aqueous solubility and a high oral dose of oleracone D may explain the different elimination kinetics of oleracone D between intravenous and oral administration. Collectively, this newly developed sensitive LC-MS/MS method of oleracone D could be successfully utilized for investigating the pharmacokinetic properties of this compound and could be used in future studies for the lead optimization and biopharmaceutic investigation of oleracone D.

Long-circulating and target-specific distributions of cyanine 5.5-labeled hyaluronic acid nanoparticles in mouse organs during 28 days after a single administration

  • Yun, Tae Sik;Lin, Chunmei;Yon, Jung-Min;Park, Seul Gi;Gwon, Lee Wha;Lee, Jong-Geol;Baek, In-Jeoung;Nahm, Sang-Seop;Lee, Beom Jun;Yun, Young Won;Nam, Sang-Yoon
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.4
    • /
    • pp.183-192
    • /
    • 2018
  • Although hyaluronic acid (HA) has been developed as a nanoparticle (NP; 320-400 nm) for a drug delivery system, the tissue targeting efficacy and the pharmacokinetics of HA-NPs are not yet fully understood. After a dose of 5 mg/kg of cyanine 5.5-labeled HA-NPs or HA-polymers was intravenously administrated into mice, the fluorescence was measured from 0.5 h to 28 days. The HA-NPs fluorescence was generally stronger than that of HA-polymers, which was maintained at a high level over 7 days in vivo, after which it gradually decreased. Upon ex vivo imaging, liver, spleen, kidney, lung, testis and sublingual gland fluorescences were much higher than that of other organs. The fluorescence of HA-NPs in the liver, spleen and kidney was highest at 30 min, where it was generally maintained until 4 h, while it drastically decreased at 1 day. However, the fluorescence in the liver and spleen increased sharply at 7 days relative to 3 days, then decreased drastically at 14 days. Conversely, the fluorescence of HA-polymers in the lymph node was higher than that of HA-NPs. The results presented herein may have important clinical implications regarding the safety of as self-assembled HA-NPs, which can be widely used in biomedical applications.

Systemic Analysis of Antibacterial and Pharmacological Functions of Scutellariae Radix (시스템 약리학적 분석에 의한 황금의 항균효과)

  • Kim, Hyo Jin;Bak, Se Rim;Ha, Hee Jung;Kim, Youn Sook;Lee, Boo Kyun;An, Won Gun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.4
    • /
    • pp.184-190
    • /
    • 2020
  • This study was performed to find antibacterial substances contained in Scutellariae Radix (SR) using a systems pharmacological analysis method and to establish an effective strategy for the prevention and treatment of infectious diseases. Analysis of the main active ingredients of SR was performed using Traditional Chinese Medicine Systems Pharmacology (TCMSP) Database and Analysis Platform. 36 active compounds were screened by the parameter values of Drug-Likeness (DL), Oral Bioavailability (OB), and Caco-2 permeability (Caco-2), which were based on the drug absorption, distribution, metabolism, and excretion indicators. The UniProt database was used to obtain information on 159 genes associated with active compounds. The main active compounds with antibacterial effects were wogonin, β-sitosterol, baicalein, acacetin and oroxylin-A. Target proteins associated with the antibacterial action were chemokine ligand 2, interleukin-6, tumor necrosis factor, caspase-8,9 and mitogen-activated protein kinase 14. In the future, systems pharmacological analysis of traditional medicine will be able to make it easy to find the important mechanism of action of active substances present in natural medicines and to optimize the efficacy of medicinal effects for combinations of major ingredients to help treat certain diseases.