• 제목/요약/키워드: Drowsy Detection

검색결과 34건 처리시간 0.017초

AR계수와 SVM을 이용한 뇌파 기반 운전자의 졸음 감지 시스템 (Electroencephalogram-based Driver Drowsiness Detection System Using AR Coefficients and SVM)

  • 한형섭;정의필
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.768-773
    • /
    • 2012
  • 운전 중 운전자의 졸음은 교통 사망사고를 일으키는 중요한 요인이며 음주운전보다도 더 위험할 수 도 있다. 이러한 이유로 운전자의 졸음을 판별하고 경고하는 시스템 개발이 최근에 매우 중요한 이슈로 떠올랐다. 그중에서도 졸음과 가장 밀접한 관련이 있는 생체 신호 분석이 많이 적용되는데 그중에서도 뇌파(Electroencephalogram, EEG)와 안구전도(Electrooculogram, EOG)를 분석하는 연구가 주류를 이루고 있다. 본 논문에서는 실험 프로토콜를 바탕으로 측정된 뇌파를 주파수별로 분석하여 운전자의 상태별 뇌파 데이터베이스를 구축하였고 선형예측(Linear Predictive Coding, LPC) 계수와 Support Vector Machine(SVM)을 이용한 운전자 졸음 감지 시스템을 제안한다. 실험결과로 졸음의 뇌파분석에서 알파파가 감소하며 세타파가 증가하는 추세를 보였으며, LPC 계수가 각성, 졸음 및 수면상태의 특징을 잘 반영하였다. 특히 제안한 시스템은 적은 샘플(250ms)에서도 96.5%의 높은 분류 결과를 얻어 짧은 순간에 일어날 운전시 돌발 상황을 실시간으로 예측할 수 있는 가능성을 보였다.

전방 추돌 경보를 위한 영상 기반 실시간 차량 검출 및 추적 알고리즘 (Vision-based Real-time Vehicle Detection and Tracking Algorithm for Forward Collision Warning)

  • 홍성훈;박대진
    • 한국정보통신학회논문지
    • /
    • 제25권7호
    • /
    • pp.962-970
    • /
    • 2021
  • 대부분의 자동차 사고는 졸음운전과 같은 운전자의 부주의로 인해 발생한다. 전방 추돌 경보 시스템 (FCWS)은 전방 차량으로부터 추돌 위험을 감지하여 운전자에게 사전에 경고함으로써 사고의 위험을 현저하게 줄여준다. 본 논문은 주행 안전을 위한 저전력 임베디드 기반 FCWS를 소개한다. 단일 카메라로부터 전방 차량에 대해 검출, 추적, 거리를 계산하고 현재 차량의 속도 정보를 통해 충돌시간 (TTC)을 계산한다. 또한 저성능 임베디드 시스템에서 실시간으로 동작하기 위해 높고 낮은 수준의 프로그램 최적화 기법을 소개한다. 이 시스템은 임베디드 시스템에서 사전에 취득해둔 주행 영상을 통해서 테스트 하였다. 최적화 기법을 사용한 결과는 이전에 최적화를 하지 않은 프로세스 보다 실행 시간이 약 170배 향상되었다.

외부조명 변화에 강인한 운전자 졸음 감지 시스템 (System for Detecting Driver's Drowsiness Robust Variations of External Illumination)

  • 최원웅;반성범;신주현
    • 한국멀티미디어학회논문지
    • /
    • 제19권6호
    • /
    • pp.1024-1033
    • /
    • 2016
  • In this study, a system is proposed for analyzing whether driver's eyes are open or closed on the basis of images to determine driver's drowsiness. The proposed system converts eye areas detected by a camera to a color space area to effectively detect eyes in a dark situation, for example, tunnels, and a bright situation due to a backlight. In addition, the system used a thickness distribution of a detected eye area as a feature value to analyze whether eyes are open or closed through the Support Vector Machine(SVM), representing 90.09% of accuracy. In the experiment for the images of driver wearing glasses, 83.83% of accuracy was obtained. In addition, in a comparative experiment with the existing PCA method by using Eigen-eye and Pupil Measuring System the detection rate is shown improved. After the experiment, driver's drowsiness was identified accurately by using the method of summing up the state of driver's eyes open and closes over time and the method of detecting driver's eyes that continue to be closed to examine drowsy driving.

뉴로모픽 칩에서 운영되는 RBF 기반 네트워크 학습을 위한 시뮬레이터 개발 (Development of a Simulator for RBF-Based Networks on Neuromorphic Chips)

  • 이여울;서경은;최대웅;고재진;이상엽;이재규;조현중
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제8권11호
    • /
    • pp.251-262
    • /
    • 2019
  • 본 논문에서는 뉴로모픽 칩에서 운영되는 RBF 네트워크를 다양한 형태로 제공하는 시뮬레이터를 제안한다. 뉴로모픽 칩의 RBF 네트워크를 학습할 때 시뮬레이터를 사용할 경우에는 시간은 단축되지만 다양한 형태의 알고리즘을 테스트하기 어렵다는 단점이 있다. 본 제안 시뮬레이터는 기존 시뮬레이터와 비교하여 4배 많은 종류의 네트워크 구조 모의실험이 가능하며 특히, 이중 레이어 구조를 추가로 제공한다. 이중 레이어 구조는 다중 데이터 입력 시 활용되도록 구성하였으며 성능 분석 결과, 본 이중 레이어 구조가 기존보다 더 높은 정확도를 보였다.