• Title/Summary/Keyword: Drought-stress

Search Result 480, Processing Time 0.022 seconds

Satellite-based Evaporative Stress Index (ESI) as an Indicator of Agricultural Drought in North Korea (Evaporative Stress Index (ESI)를 활용한 북한의 위성영상기반 농업가뭄 평가)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Hong, Eun-Mi;Kim, Dae-Eui;Svoboda, Mark D.;Tadesse, Tsegaye;Wardlow, Brian D.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.1-14
    • /
    • 2019
  • North Korea has frequently suffered from extreme agricultural crop droughts, which have led to food shortages, according to the Food and Agriculture Organization (FAO). The increasing frequency of extreme droughts, due to global warming and climate change, has increased the importance of enhancing the national capacity for drought management. Historically, a meteorological drought index based on data collected from weather stations has been widely used. But it has limitations in terms of the distribution of weather stations and the spatial pattern of drought impacts. Satellite-based data can be obtained with the same accuracy and at regular intervals, and is useful for long-term change analysis and environmental monitoring and wide area access in time and space. The Evaporative Stress Index (ESI), a satellite-based drought index using the ratio of potential and actual evaporation, is being used to detect drought response as a index of the droughts occurring rapidly over short periods of time. It is more accurate and provides faster analysis of drought conditions compared to the Standardized Precipitation Index (SPI), and the Palmer Drought Severity Index (PDSI). In this study, we analyze drought events during 2015-2017 in North Korea using the ESI satellite-based drought index to determine drought response by comparing with it with the SPI and SPEI drought indices.

Physiological and Biochemical Responses of Local Arundinella hirta Collections in Korea against Drought Stress

  • Khan, Inam;Min, Chang-Woo;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.1
    • /
    • pp.39-44
    • /
    • 2019
  • Drought is one of the key limiting factors that adversely affects the growth and productivity of crop plants. For the enhancement of drought tolerance in crop plants, the identification of basic mechanisms of a plant to drought stress is necessary. In this study, we compared physiological and biochemical responses of five local Arundenilla hirta ecotypes to drought stress. These ecotypes were previously collected from various parts of Korean peninsula, including Youngduk, Gunsan, Jangsoo, Jinju-1 and Yecheon. A. hirta plants were exposed to drought stress for 14 and 17 days respectively, followed by re-watering for 3 days. The results showed that the lipid peroxidation (MDA), hydrogen peroxide ($H_2O_2$), DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity, and proline level were significantly increased while the chlorophyll content was decreased by drought stress in A. hirta leaves. The highest proline content and DPPH scavenging activity were shown in Ecotype of Youngduk with least MDA and $H_2O_2$ levels while the highest MDA and $H_2O_2$ contents, and least proline and DPPH levels were shown in Gunsan, respectvely. These results indicate that the Youngduk is the most tolerant and Gunsan is the most sensitive ecotype among the five different collections. Together, these results provide a new insight of overall physiological responses of A. hirta to drought stress.

Drought Hazard Assessment using MODIS-based Evaporative Stress Index (ESI) and ROC Analysis (MODIS 위성영상 기반 ESI와 ROC 분석을 이용한 가뭄위험평가)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Lee, Hee-Jin;Hong, Eun-Mi;Kim, Taegon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.51-61
    • /
    • 2020
  • Drought events are not clear when those start and end compared with other natural disasters. Because drought events have different timing and severity of damage depending on the region, various studies are being conducted using satellite images to identify regional drought occurrence differences. In this study, we investigated the applicability of drought assessment using the Evaporative Stress Index (ESI) based on Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images. The ESI is an indicator of agricultural drought that describes anomalies in actual and reference evapotranspiration (ET) ratios that are retrieved using remotely sensed inputs of Land Surface Temperature (LST) and Leaf Area Index (LAI). However, these approaches have a limited spatial resolution when mapping detailed vegetation stress caused by drought, and drought hazard in the actual crop cultivation areas due to the small crop cultivation in South Korea. For these reasons, the development of a drought index that provides detailed higher resolution ESI, a 500 m resolution image is essential to improve the country's drought monitoring capabilities. The newly calculated ESI was verified through the existing 5 km resolution ESI and historical records for drought impacts. This study evaluates the performance of the recently developed 500 m resolution ESI for severe and extreme drought events that occurred in South Korea in 2001, 2009, 2014, and 2017. As a result, the two ES Is showed high correlation and tendency using Receiver Operating Characteristics (ROC) analysis. In addition, it will provide the necessary information on the spatial resolution to evaluate regional drought hazard assessment and and the small-scale cultivation area across South Korea.

Understanding of Drought Stress Signaling Network in Plants (식물의 물부족 스트레스 신호 전달 네트워크에 대한 이해)

  • Lee, Jae-Hoon
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.376-387
    • /
    • 2018
  • Among a variety of environmental stresses heat, cold, chilling, high salt, drought, and so on exposed to plants, drought stress has been reported as a crucial factor to adversely affect the growth and productivity of plants. Therefore, to understand the mechanism for the drought stress signal transduction pathway in plants is more helpful to develop useful crops that display the enhanced tolerance against drought stress, and to expand crop growing areas. The signal transduction pathway for the drought stress in plants is largely categorized into two types; ABA-dependent pathway and ABA-independent pathway. It has been reported that two transcription factors, AREB/ABF and DREB2, play predominant roles in ABA-dependent and ABA-independent pathways, respectively. In addition to transcriptional regulation mediated by AREB/ABF and DREB2 transcription factors, post-translational modification (such as phosphorylation and ubiquitination) and epigenetic control are importantly involved in the signal transduction for drought stress. In this paper, we review current understanding of signal transduction pathway on drought stress in plants, especially focusing on the biological roles of a variety of signaling components related to drought stress response. Further understanding the mechanism of drought resistance in plants through this review will be useful to establish theoretical basis for developing drought tolerant crops in the future.

Effect of Trichoderma sp. GL02 on alleviating Drought Stress in Pepper Plants (Trichoderma sp. GL02에 의한 고추 식물의 건조 스트레스 완화 효과)

  • Kim, Sang Tae;Yoo, Sung-Je;Song, Jaekyeong;Weon, Hang-Yeon;Sang, Mee Kyung
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.3
    • /
    • pp.417-430
    • /
    • 2020
  • Drought stress is one of major environmental stresses in plants; this leads to reduce plant growth and crop yield. In this study, we selected fungal isolate for mitigating drought stress in pepper plants. To do this, 41 fungi were isolated from rhizosphere or bulk soils of various plants in Jeju, Gangneung, Hampyeong in Korea. Out of 41 isolates, we screened two isolates without phytotoxicity through seed germination of tomato, pepper, and cabbage treated with fungal spores; through following plant assay, we selected GL02 as a candidate for alleviating drought stress in pepper plants. As a result of greenhouse test of pepper plants in drought condition, the stomatal conductance on leaves of pepper plants treated with GL02 was increased, whereras the malondialdehyde (MDA) and electrolyte leakage were decreased compared to that in control plants. When stressed plants were rewatered, stomatal conductance of the plants treated with GL02 was increased; the electrolyte leakage was decreased. Based on internal transcribed spacer (ITS) sequencing analysis, isolate GL02 was belonging to genus Trichoderma. Taken together, drought stress in pepper plants treated with GL02 was alleviated, when it was rewatered after drought-stressed, the plants could be recovered effectively. Therefore, Trichoderma sp. GL02 could be used as a bio-fertilizer to alleviate drought stress in pepper plants.

Root metabolic cost analysis for root plasticity expression under mild drought stress

  • Kano-Nakata, Mana;Mitsuya, Shiro;Inukai, Yoshiaki;Yamauchi, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.328-328
    • /
    • 2017
  • Drought is a major limiting factor that reduces rice production and occurs often especially under recent climate change. Plants have the ability to alter their developmental morphology in response to changing environment, which is known as phenotypic plasticity. In our previous studies, we found that one chromosome segment substitution line (CSSL50 derived from Nipponbare and Kasalath crosses) showed no differences in shoot and root growth as compared with the recurrent genotype, Nipponbare under non-stress condition but showed greater growth responses compared with Nipponbare under mild drought stress condition. We hypothesized that reducing root respiration as metabolic cost, which may be largely a consequence of aerenchyma formation would be one of the key mechanisms for root plasticity expression. This study aimed to evaluate the root respiration and aerenchyma formation under various soil moisture conditions among genotypes with different root plasticity. CSSL50 together with Nipponbare and Kasalath were grown under waterlogged conditions (Control) and mild drought stress conditions (20% of soil moisture content) in a plastic pot ($11cm{\times}14cm$, ${\varphi}{\times}H$) and PVC tube ($3cm{\times}30cm$, ${\varphi}{\times}H$). Root respiration rate was measured with infrared gas analyzer (IRGA, GMP343, Vaisala, Finland) with a closed static chamber system. There was no significant difference between genotypes in control for shoot and root growth as well as root respiration rate. In contrast, all the genotypes increased their root respiration rates in response to mild drought stress. However, CSSL50 showed lower root respiration rate than Nipponbare, which was associated by higher root aerenchyma formation that was estimated based on internal gas space (porosity) under mild drought stress conditions. Furthermore, there were significant negative correlations between root length and root respiration rate. These results imply that reducing the metabolic cost (= root respiration rate) is a key mechanism for root plasticity expression, which CSSL50 showed under mild drought.

  • PDF

Effect of Drought Stress at Various Growth Stages on Soybean Growth and Yield (생육단계별 한발처리가 콩의 생육 및 수량에 미치는 영향)

  • 김충국;고문환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.1
    • /
    • pp.89-94
    • /
    • 1997
  • The present study was conducted to know the growth and yield of in response to the drought stress at the different soybean growth stage. Drought stress was given to the soybean plants on early vegetative growth at fourth-node stage(FNS), mid-growth at beginning pod stage(BPS) and late growth at beginning seed stage(BSS) for 30 days, which are high availability in soil water stress on climate condition of Korea. Dry weight was decreased severely by water stress at FNS, and BPS and BSS has no difference compared to control. Chlorophyll content of leaf severely decreased at the end of water stress of FNS and BPS, but was recovered at the harvest stage. Drought-stressed root distributed mainly near the soil surface and number and dry weight of root nodule were decreased severely by drought stress at BPS. Number of pod, seed weight and yield were decreased by drought stress and showed the highest yield loss at BPS.

  • PDF

Changes of antioxidant enzyme activities subjected to water stress in soybean leaves (대두(大豆)에서 분석(水分)스트레스에 의(依)한 항산화효소(抗酸化酵素)의 활성도(活性度) 변화(變化))

  • Kim, Tae-Sung;Kang, Sang-Jae;Park, Woo-Churl
    • Current Research on Agriculture and Life Sciences
    • /
    • v.16
    • /
    • pp.24-30
    • /
    • 1998
  • This experiment was carried out to elucidate and study about plant defense mechanism subjected to water stress(drought, flooding). We measured water content, total soluble protein content as stress marker and superoxide dismutase(SOD), catalase (CAT) as antioxidant enzymes subjected to water stress(drought, flooding) and recovery in soybean leaves. The results obtained were as follows; Two soybean lines(keonolkong, euhakong)leaves exposed to water stress (drought, flooding) showed premature senescence as evidence by the decrease in water content, and total soluble protein content, but those of soybean leaves subject to water stress recovery for 3 days were recovered. Visual damage was much worse at drought stress than flooding stress and was worse keunolkong than enhakong. The activity of superoxide dismutase, catalase subjected to water stress(drought, flooding)was on the decrease, but degree of decrease was different from a sort of soybean lines, drought and flooding stress.

  • PDF

Comparative Study of Drought Stress Responses on Several Italian Ryegrass Varieties

  • Il-Kyu Yoon;Min-Jun Kim;Myung-Ju Kim;Byung-Hyun Lee
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.44 no.3
    • /
    • pp.215-219
    • /
    • 2024
  • Italian ryegrass (Lolium multiflorum Lam.) is one of the most widely grown winter forage crops in Korea, but its yields are known to be greatly affected by drought that occur frequently in spring. This study aimed to compare the growth and tolerance response characteristics to drought stress in several Italian ryegrass varieties cultivated in Korea. Twenty-day-old Italian ryegrass was subjected to drought treatment for 4 days, and then the growth and physiological responses of the plants were compared. Drought stress reduced leaf length, fresh weight, and dry weight in all Italian ryegrass varieties compared to the control. In addition, chlorophyll content was significantly decreased in all varieties treated with drought stress, but Fv/Fm was significantly decreased only in Winter hawk. For H2O2 and malondialdehyde (MDA) contents, Winter hawk showed the highest increase and New dawn showed the least increase. In terms of relative water content (RWC), New dawn showed the least decrease and Winter hawk showed the greatest decrease. These results indicate that New dawn is relatively drought-tolerant and Winter hawk is a drought-sensitive variety, indicating that each variety of Italian ryegrass has different drought tolerance mechanisms, which may provide basic insight for the development of tolerant varieties in the future.

Percentile Approach of Drought Severity Classification in Evaporative Stress Index for South Korea (Evaporative Stress Index (ESI)의 국내 가뭄 심도 분류 기준 제시)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Hong, Eun-Mi;Kim, Taegon;Park, Jong-Hwan;Kim, Dae-Eui
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.63-73
    • /
    • 2020
  • Drought is considered as a devastating hazard that causes serious agricultural, ecological and socio-economic impacts worldwide. Fundamentally, the drought can be defined as temporarily different levels of inadequate precipitation, soil moisture, and water supply relative to the long-term average conditions. From no unified definition of droughts, droughts have been divided into different severity level, i.e., moderate drought, severe drought, extreme drought and exceptional drought. The drought severity classification defined the ranges for each indicator for each dryness level. Because the ranges of the various indicators often don't coincide, the final drought category tends to be based on what the majority of the indicators show and on local observations. Evaporative Stress Index (ESI), a satellite-based drought index using the ratio of potential and actual evaporation, is being used as a index of the droughts occurring rapidly in a short period of time from studies showing a more sensitive and fast response to drought compared to Standardized Precipitation Index (SPI), and Palmer Drought Severity Index (PDSI). However, ESI is difficult to provide an objective drought assessment because it does not have clear drought severity classification criteria. In this study, U.S. Drought Monitor (USDM), the standard for drought determination used in the United States, was applied to ESI, and the Percentile method was used to classify drought categories by severity. Regarding the actual 2017 drought event in South Korea, we compare the spatial distribution of drought area and understand the USDM-based ESI by comparing the results of Standardized Groundwater level Index (SGI) and drought impact information. These results demonstrated that the USDM-based ESI could be an effective tool to provide objective drought conditions to inform management decisions for drought policy.