• Title/Summary/Keyword: Droplet Measurement

Search Result 147, Processing Time 0.022 seconds

Atomization Characteristics of Fuel Spray in Fuel Injector in Gasoline Direct-Injection Engine (가솔린 직분식 엔진 인젝터의 연료 분무 미립화 특성)

  • Lee, C.S.;Lee, K.H.;Choi, S.C.;Kwon, S.I.
    • Journal of ILASS-Korea
    • /
    • v.4 no.2
    • /
    • pp.33-39
    • /
    • 1999
  • This paper presents the spray atomization characteristics of the high-pressure gasoline injector for the direct-injection gasoline engine. The gasoline sprays of the injector were minted into a pressurized spray chamber with a optical access at various ambient pressures. The atomization characteristics of fuel spray such as mean diameter, mean velocity of droplet were measured by the phase Doppler particle analyzer system. In order to investigate the effect of fuel injection pressure on the quantitative characteristics of spray, the global visualization and experiment of particle measurement in the fuel spray were investigated at 3, 5 and 7 MPa of injection pressure under different ambient pressure in the spray chamber. Based on the results of this work, the fuel injection pressure of fuel injector in gasoline direct-injection engine have influence upon distribution of the mean velocity and droplet size of fuel spray. Also, the influence of injection pressure on the velocity distribution at various measuring location were investigated.

  • PDF

Application of Fluorescence/Scattering Technique to the Measurement of Spray Droplet Size in GDI Injector (직접 분사식 가솔린 인젝터 분무의 입경 측정에 형광/산란광법의 적용)

  • Kwak, Soo-Min;Ryu, Kyeong-Hun;Choi, Bong-Seok;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.353-358
    • /
    • 2000
  • To achieve the requirement for high fuel economy and low emissions, the research for GDI engines is recently very brisk in the whole world. This study was performed to measure distribution of average particle size in non-evaporating spray. The 2-D fluorescence/scattering images of fuel spray were captured simultaneously by visualization system composed of a laser sheet, a doubling prism, optical filters, and an ICCD camera. Using the ratio of the two light intensities, particle size distribution was obtained. The SMD measured by fluorescence/scattering technique was compared with it obtained by PDA. The experimental results show that the spray structure of GDI injector and temporal SMD distribution.

  • PDF

An Experimental Study on the Dynamic Behavior of Spray Droplets in the Wind Tunnel (관내 분무액적의 유동특성에 관한 실험적 연구)

  • Park, Dae-Sick;Choi, Heok-Jun;Park, Sang-Gyun;Kim, Myoung-Hwan;Oh, Cheol;Yun, Seok-Hun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.95-100
    • /
    • 2002
  • This study was experimentally performed to investigate flow characteristics of spray droplets in the wind tunnel. Behavior of the spray droplets in the pipe was observed and the deposition rate of droplets on the surface of pipe as liquid film was measured. The experiments were carried out for a variety of parameter, such as velocity of feed air, spray angle of nozzle, and diameter of droplet. From the visual observation of the spray droplets in the pipe and the measurement of deposition rate on the pipe, the general understanding of droplets behavior for desuperheater was provided.

  • PDF

2-D Simultaneous Measurements of Velocity and Diameter of Diesel Spray Droplets by Novel Interferometric Laser Imaging for Droplet Sizing (ILIDS) Method

  • Ryul, C.-S;Y. Moriyoshi;M. Yamada
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.263-268
    • /
    • 2004
  • The characteristics of Diesel spray droplets, such as the velocity and the diameter were simultaneously measured by using an improved Interferometric Laser Imaging for Droplet Sizing method. The experiments were carried out using an accumulator-type unit injector system and a constant-volume vessel. Two dimensional cross-section photographs of sprays were also taken using a double-pulsed Nd- YAG laser sheet and a linear array CCD camera. As a result, interesting relations between the droplets diameter and the velocity were found.

Development of a Method to Measure Droplet Size and Spray Deposition Using Computer Vision (컴퓨터 시각에 의한 분무입자 크기와 분무량 측정법 개발)

  • Suh, S.R.;Kim, T.H.;Sung, J.H.;Chung, J.H.;Yoo, S.N.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.4
    • /
    • pp.369-379
    • /
    • 1994
  • A computer vision system consisted of a microscope, a CCD camera, a frame grabber and a personal computer was used to analyze spraying pattern. An algorithm was developed for the system to measure size of droplets including overlapped droplets, to count number of droplets, and to estimate spray deposition in a certain area from the data obtained. A series of experiment was carried out to test validity of the algorithm. The experiment resulted that accuracy of the droplet size measurement, accuracy of counting the number of droplets and the estimation of spray deposition were within an acceptable range. It was concluded from the results that the computer vision system operated by the developed algorithm is very useful tool to analyze spraying pattern.

  • PDF

Measurement of Insoluble Mineral Particles in a Saturated Atmosphere

  • Ma, Chang-Jin;Choi, Sung-Boo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E1
    • /
    • pp.44-53
    • /
    • 2008
  • This study was undertaken to measure the properties of individual mineral particles in an artificially saturated atmosphere at a vertical extinct mine with 430 m height. By synchrotron radiation X-ray fluorescence (SR-XRF) microprobe analysis, it was possible to determine the elemental composition of residual insoluble particles on individual cloud droplet replicas formed on the Collodion film. The XRF visualized elemental maps enabled us not only to presume the chemical mixing state of particles retained in cloud droplet, but also to estimate their source. Details about the individual mineral particles captured by artificial cloud droplets should be helpful to understand about the removal characteristics of dust particles such as interaction with clouds. Nearly all individual particles captured in cloud droplets are strongly enriched in Fe. Mass of Fe is ranged between 41 fg and 360 fg with average 112 fg. There is a good agreement between single particle analysis by SR-XRF and bulk particle analysis by PIXE.

A Study on the Atomization of a Highly Viscous Biodiesel Oil (고점성 바이오 디젤유의 분무미립화에 관한 연구)

  • 주은선;정석용;강대운;김종천
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.146-153
    • /
    • 1997
  • An experiment was conducted to figure out the atomization characteristics of a highly viscous biodiesel fuel with rice-barn oil applying and ultrasonic energy into it. A spray simulator for the droplet atomization, an ultrasonic system, and six different nozzles(3 pintle-type nozzles and 3 single hole-type nozzles) were made. To investigate effects of ultrasonic energy in a highly viscous liquid fuel, an immersion liquid method was used as a measurement method on droplet size distributions. It was found that the ultrasonic energy was effective for the atomization improvement of the rice-bran oil as a highly viscous biodiesel fuel and the factor나 such as the nozzle opening pressure, pin-edge angles, hole diameters, and collection distances affected the atomization of spray droplets.

  • PDF

Investigation of Droplet Growth and Heat Transfer Characteristics during Dropwise Condensation on Hydrophobic Copper Surface (소수성 구리 표면에서의 액적 응축에 관한 액적 성장 및 열전달 특성 연구)

  • Lee, Hyung Ju;Jeong, Chan Ho;Kim, Dae Yun;Moon, Joo Hyun;Lee, Jae Bin;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.23 no.3
    • /
    • pp.149-153
    • /
    • 2018
  • The present study investigates the heat transfer characteristics of droplet growth during dropwise condensation on the hydrophobic copper surface. We use the copper specimen coated by the self-assembled layer and conduct the real-time measurement of droplet size and spatial distribution of condensates during condensation with the use of the K2 lens (long distance microscope lens) and CMOS camera. The temperatures are measured by three RTDs (resistance temperature detectors) that are located through the holes made in the specimen. The surface temperature is estimated by the measured temperatures with the use of the one-dimensional conduction equation. It is observed that the droplets on the surface are growing up and merging, causing larger droplets. The experimental results show that there are three distinct regimes; in the first regime, individual small droplets are created on the surface in the early stage of condensation, and they are getting larger owing to direct condensation and coalescence with other droplets. In the second and third regimes, the coalescence occurs mainly, and the droplets are detached from the surface. Also, the fall-off time becomes faster as the surface wettability decreases. In particular, the heat transfer coefficient increases substantially with the decrease in wettability because of faster removal of droplets on the surfaces for lower wettability.

Characteristics of Water Droplets in Gasoline Pipe Flow (가솔린 송유관에서의 수액적 거동 특성)

  • Kim, J.H.;Kim, S.G.;Bae, C.;Sheen, D.H.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2001
  • Liquid fossil fuel contaminated by water can cause trouble in the combustion processes and affect the endurance of a combustion system. Using an optical sensor to monitor the water content instantaneously in a fuel pipeline is an effective means of controlling the fuel quality in a combustion system. In two component liquid flows of oil and water, the flow pattern and characteristics of water droplets are changed with various flow conditions. Additionally, the light scattering of the optical sensor measuring the water content is also dependent on the flow patterns and droplet characteristics. Therefore, it is important to investigate the detailed behavior of water droplets in the pipeline of the fuel transportation system. In this study, the flow patterns and characteristics of water droplets in the turbulent pipe flow of two component liquids of gasoline and water were investigated using optical measurements. The dispersion of water droplets in the gasoline flow was visualized, and the size and velocity distributions of water droplets were simultaneously measured by the phase Doppler technique. The Reynolds number of the gasoline pipe flow varied in the range of $4{\times}10^{4}\;to\;1{\times}10^{3}$, and the water content varied in the range of 50 ppm to 300 ppm. The water droplets were spherical and dispersed homogeneously in all variables of this experiment. The velocity of water droplets was not dependent on the droplet size and the mean velocity of droplets was equal to that of the gasoline flow. The mean diameter of water droplets decreased and the number density increased with the Reynolds number of the gasoline flow.

  • PDF

Electrohydrodynamic Ink Jetting Monitoring based on Current Measurement (전류 측정을 이용한 수력학적 잉크젯 토출 모니터링)

  • Kwon, Kye-Si;Lee, Dae-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.449-454
    • /
    • 2012
  • The method for spraying of liquid through an electrical filed has become a printing method since it can make very small droplet. To increase the reliability using the electro-hydrodynamic (EHD) jet printing, the jetting status needs to be monitored. Vision measurement techniques using high speed camera has been used to visualize the jet images. However, it requires image processing of a lot of images after image acquisitions. So, it is difficult to understand jet behavior such as jetting frequency, jet repeatability etc. In this work, a low cost electrical current measurement method was developed to measure electrical current from EHD jet printing. To verify the jetting monitoring capability of developed circuit, images from high speed camera were processed for comparison purpose.