• 제목/요약/키워드: Drop-In

검색결과 6,203건 처리시간 0.031초

압력식 스월 노즐의 액적 크기분포 예측에 관한 연구 (A Study on the Prediction of the Drop Size Distribution of Pressure-Swirl Atomizer)

  • 조대진;윤석주;김동우
    • 한국분무공학회지
    • /
    • 제1권1호
    • /
    • pp.44-54
    • /
    • 1996
  • A theoretical and experimental study was carried out on the prediction of drop size distribution of the pressure swirl atomizer. Drop size distribution was obtained by using maximum entropy formal ism. Several constraints in the form of the definition of mean diameter were used in this formulation in order to avoid the difficulties of the estimating source terms. In this study $D_{10}$ was only introduced into the formulation as a constraint. A drop size obtained by using linear Kelvin-Helmholtz instability theory was considered as an unknown characteristic length scale. As a result, the calculated drop size was agreed well with measured mean diameter, particularly with $D_{32}$. The predicted drop size distribution was agreed welt with experimental data measured wi th Malvern 2600.

  • PDF

예비축전지를 갖는 배전계통 전압강하의 비용최적 설계 (An optimal design guideline for voltage drop of DC distribution system with batteries)

  • 조일권;김만고
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.400-402
    • /
    • 1994
  • The voltage drop in distribution path of battery-reserved DC power system can affect the total of battery, cable and electricity costs. To determine an optimum voltage drop in distribution path for minimizing the total cost, battery, cable and electricity costs are represented as a function of the voltage drop, respectively, and are summed up to the total cost. An optimum voltage drop is selected as the value giving the minimum total cost. In this paper, a design technique of optimum voltage drop in distribution path of DC power system is proposed to minimize the total of battery, cable and electricity costs. The design procedure is described and design curve for selecting optimum voltage drop is also presented as a function of distribution distance.

  • PDF

Plate and Shell 열교환기내의 R-22 응축압력강하 특성에 관한 실험적 연구 (An Experimental Study on Pressure drop Characteristics in Plate and Shell Heat Exchanger)

  • 이기백;서무교;박재홍;김영수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권6호
    • /
    • pp.1220-1227
    • /
    • 2001
  • The condensation pressure drop fur refrigerant R-22 flowing in the plate and shell heat exchanger were investigated experimentally in this study. Two vertical counterflow channels were formed in the exchanger by three plates of commercial geometry with a corrugated trapezoid shape of a chevron angel of $45^{\circ}$. The condensing R-22 flowing down in one channel exchanges heat with the cold water flowing up in the other channel. The effects of the mean vapor quality, mass flux, average imposed heat flux and system pressure of R-22 on the pressure drop were explored in detail. The quality change of R-22 between the inlet and outlet of the refrigerant channel ranges from 0.03 to 0.05. The present data showed that pressure drop increases with the vapor quality. At a higher mass flux, pressure drop is higher for the entire range of the vapor quality. Also, a rise in the average imposed heat flux causes an slight increase in the Pressure drop. Finally, at a higher system pressure the pressure drop is found to be slightly lower. Correlation is also provided for the measured pressure drops in terms of the friction factor.

  • PDF

Pressure drop in packed beds with horizontally or vertically stratified structure

  • Li, Liangxing;Xie, Wei;Zhang, Zhengzheng;Zhang, Shuanglei
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2491-2498
    • /
    • 2020
  • The paper concentrates on an experimental study of the pressure drop in double-layered packed beds formed by glass spheres, having the configuration of horizontal and vertical stratification. Both single-phase and two-phase flow tests are performed. The pressure drop during the test is recorded and the measured data are compared with those of homogeneous beds consisting of mono-size particles. The results show that for the horizontally stratified bed with fine particles atop coarse particles, the pressure drop in top layer is found higher than those of homogenous bed consisting of the same smaller size particles, while the measured pressure drop of bottom part is similar with those of similar homogenous bed. But for the homologous bed with upside-down structure, the stratification has little or no effect on the pressure drop of the horizontally stratified bed, and the pressure drop of each layer is almost same as that of homogeneous bed packed with corresponding spheres. Additionally, in vertically stratified bed, the pressure drops on the left and right side is almost equal and between those in homogeneous beds. It is speculated that vertically stratified structure may lead to lateral flow which redistributes the flow rate in different parts of packed bed.

Reliability of Navicular Drop Measurements in Standing and Sitting Positions

  • Park, Ji-Won;Chang, Jong-Sung;Nam, Ki-Seok
    • The Journal of Korean Physical Therapy
    • /
    • 제22권6호
    • /
    • pp.29-33
    • /
    • 2010
  • Purpose: This study was designed to investigate inter-rater and intra-rater reliability of navicular drop measurements by clinicians in sitting and standing positions. Methods: Fourteen subjects with pronated foot were recruited. Two physical therapists randomly assessed the same patients on different occasions but on the same day. Almost all patients were assessed on more than one day. The intra-rater and inter-rater reliability of navicular dropwas estimated by calculation of the intraclass correlation coefficient (ICC). Results: The intra-rater reliability of navicular drop measurements ranged from 0.93 to 0.87, the inter-rater reliability from 0.98 to 0.70 with the patient in standing and sitting positions. These results showed good reliability for calculated variables. Intra-rater and inter-rater reliability of navicular drop in standing position was higher than those of sitting position. Conclusion: Although inter-rater and intra-rater reliability of navicular drop in the sitting position was lower than in the standing position, measurement of navicular drop in the sitting position showed good reliability and was acceptable for patients who could not stand alone without assistance. We recommend that having the patient in the standing position is appropriate in navicular drop measurement.

Pulsed GMAW 의 전류 파형이 금속이행에 미치는 영향 (Effect of current waveform on drop transfer in pulsed gas metal arc welding)

  • ;유중돈
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.48-48
    • /
    • 2009
  • Conventionally in pulsed gas metal arc welding (GMAW-P), drop transfer is analyzed with simplest square pulse waveform. While the pulse current is described by four parameters (peak current magnitude and time plus base current magnitude and time), it deviates the real pulse shape. Real pulse can be better idealized by the trapezoidal pulse waveform described by two additional parameters, i.e., current rise and fall rate (dI/dt). Power source response rate is described by these parameters. In this work, the effect of these parameters on drop transfer is predicted by the force displacement model (FDM). While peak current has significant effects on drop detachment, drop transfer is also influenced by the current rise rate. Predictions indicate that the current rise rate can have considerable effects on the size of the detached drop if other pulse parameters are kept constant. FDM is applied to determine peak time for one drop one pulse condition (ODOP) when rests of the pulse parameters are given. The predicted range of ODOP shows good agreement with experimental data.

  • PDF

Evaporation Pressure Drop Characteristics with R-22 in the Plate and Shell Heat Exchangers

  • Park, Jae-Hong;Seo, Moo-Gyo;Lee, Ki-Baik;Kim, Young-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제10권3호
    • /
    • pp.129-137
    • /
    • 2002
  • In this study, evaporation pressure drop experiments were conducted with two types of plate and shell heat exchangers (P&SHE) using R-22. An experimental refrigerant loop has been established to measure the evaporation pressure drop of R-22 in a vertical P&SHE. The flow channels were formed by stacking three plates having a corrugated channel of a chevron angle of 45 dog. The R-22 flows down in one channel exchanging heat with the hot water flowing up in the other channel. The effect of the refrigerant mass flux, average heat flux, system pressure and vapor quality were explored in detail. During the experiment, the quality change between the inlet and outlet of the refrigerant channel ranges from 0.03 to 0.15. The present data showed that two types of P&SHE have similar trends. The pressure drop in-creases with the vapor quality for both types of P&SHE. At a higher mass flux, the Pressure drop is higher for the entire range of the vapor quality. Also, the increase in the average heat flux increases the pressure drop. Finally, at a higher system pressure, the pressure drop is found to be slightly lower compared to the lower system pressure.

Study on blockage after downward discharge of the molten metallic fuel with radiographic visualization

  • Lee, Min Ho;Jerng, Dong Wook;Bang, In Cheol
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.117-129
    • /
    • 2022
  • The downward discharge of the molten fuel to the lower structure of the fuel assembly could increase of the pressure drop and degrade of coolability of the assembly. To analyze the phenomena, experiments for the generation of the debris bed were conducted as LOF-DT series. Based on the debris bed in the LOF-DT, pressure drop experiment was conducted with intact and blocked component. Parametric study on the pressure drop was conducted by CFD. The LOF-DT experiments were conducted for the position and porosity of the debris bed. 85% of the debris were sedimented in the lower reflector, and 15% were in the nose piece, approximately. Porosity of the debris bed were about 0.7 and 0.85 in the lower reflector and nose piece, respectively. Pressure drop increased significantly with debris bed, especially in the lower reflector. More than 120 time of the pressure drop increased in the lower reflector, while only 10% increased in the nose piece. According to the parametric study, mass of the debris was the most important for pressure drop. The lower discharge phenomena could have a significant effect to the total pressure drop of the fuel assembly, approximately 10.8 times for the base case.

냉연판의 엣지드롭 해석 및 제어용 수식모델 개발 (Analysis of edge drop and development of numerical formula for edge drop control of cold rolled sheet)

  • 송길호;박해두;진철제;신성갑
    • 대한기계학회논문집A
    • /
    • 제22권4호
    • /
    • pp.723-730
    • /
    • 1998
  • With the introduction of edge drop control system in Tandem Cold Rolling Mill, it is necessary to develop te numerical expression for the set-up and edge drop automatic control of cold rolled sheet. As a first step we developed a simulation program which predicts profile and the amounts of edge drop at the delivery side of each stand by using roll deformation anlysis with the slit roll model. And by using the program the effect of various rolling conditions on edge drop was investigated. As a result the relations were obtained between the amounts of edge drop and rolling conditions. Based on above relations, the numerical expression was developed for the set-up and automatic control of edge drop by multi-regression of simulation results for the variation of edge drop amount with each rolling condition.

Influence of design modification of control rod assembly for Prototype Generation IV Sodium-cooled Fast Reactor on drop performance

  • Son, Jin Gwan;Lee, Jae Han;Kim, Hoe Woong;Kim, Sung Kyun;Kim, Jong Bum
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.922-929
    • /
    • 2019
  • This paper presents the drop performance test of the control rod assembly which is one of the main components strongly related to the safety of the prototype generation IV sodium-cooled fast reactor. To investigate the drop performance, a real-sized control rod assembly that was recently modified based on the drop analysis results was newly fabricated, and several free drop tests under different flow rate conditions were carried out. Then the results were compared with those obtained from the previous tests conducted on the conceptually designed control rod assembly to demonstrate the improvement in performance. Moreover, the drop performance tests under several types and magnitudes of seismic loadings were also conducted to investigate the effect of the seismic loading on the drop performance of the modified control rod assembly. The results showed that the effects of the type and magnitude of the seismic loading on the drop performance of the modified control rod assembly were not significant. Also, the drop time requirement was successfully satisfied, even under the seismic loading conditions.