• Title/Summary/Keyword: Drop impact reliability

Search Result 36, Processing Time 0.028 seconds

A Study on Strength Evaluation of LCD Glass for Drop test (액정 디스플레이(LCD) 낙하 충격해석에 관한 연구)

  • Joung, Jae-Hak;Kim, Han-Ba-Ra;Seong, Young-Ho;Choi, Hyun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.10
    • /
    • pp.99-108
    • /
    • 2007
  • As the structure of a mobile phone becomes thin to catch up with a slim product trend, the reliability of a LCD module is on the rise as a big issue for a product design. A drop test is the most basic and important verification method for a mechanical quality control but it requires much time and cost during a product development process. Thus many manufacturers have considered design guide lines using CAE and simulation for more effective usage of limited resources on the market. In this paper, the Maximum Principle Stress of a LCD glass panel is calculated on the basis of explicit FE Analyses method and input conditions are determined according to the general test standard. The design guideline for reliability improvements are suggested on the basis of the results of FE Analysis.

Experimental Study of Water Impact Loads on Symmetric and Asymmetric Wedges (대칭 및 비대칭 2차원 쐐기의 입수 충격에 관한 실험적 연구)

  • Kim, Kyong-Hwan;Lee, Dong Yeop;Hong, Sa Young;Kim, Young-Shik;Kim, Byoung Wan
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.209-217
    • /
    • 2014
  • In the present study, the water impact loads on two-dimensional symmetric and asymmetric wedges were mainly studied. The impact pressure and force were measured during a vertical drop of the symmetric and asymmetric wedges. The measured pressure was compared with analytic solutions. The measured force at a local area of the wedge was compared with the integrated pressures and analytic solutions. Some findings on symmetric and asymmetrical wedge drops are presented, and the reliability of the force sensor used for the measurement of the local impact force is discussed.

Study on Shock Resistance Design of TFT-LCD Module using Explicit Impact Analysis (TFT-LCD 모듈의 충격해석을 통한 내충격설계 연구)

  • Kim, J.G.;Lee, J.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.24-29
    • /
    • 2010
  • TFT-LCD module with thin, small and layered structure makes its shock analysis very difficult and complicated. As TFT-LCD becomes more thinner, it is more difficult to assure its required shock resistance. Recently, the drop/impact simulation using the commercial explicit dynamic analysis software such as LS-DYNA3D is actively applied to assess the shock characteristics of TFT-LCD. In this study, the effects of analysis parameters and design modifications in the drop/impact simulation are carefully studied. the reliability of the present analysis results can be assured through the experimental verification.

Damage Evaluation of CD-RW Drive by Drop Test and Simulation (CD-RW Drive의 낙하충격 손상평가)

  • Woo Jae Chul;Yun Ki Won;Seok Ki Young;Kim Heon Young;Kim Sang Bum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.81-87
    • /
    • 2005
  • A fracture of hand held device, such as radio, TV and CD-RW drive, mainly occurs due to drop situation. For CD-RW drive, the need of high reading/writing speed in conjunction with low price accelerates the fracture of the device. Computer simulation can reduce the period of development and enhance impact characteristic of device. In this study, the detailed finite element model of CD-RW drive was developed to predict the damage under drop conditions. Material property for shock absorbing damper was obtained from tensile test of raw material. A MOONEY-RIVLIN type rubber in LS-DYNA was used as the material model of damper. To assess the reliability of the developed model, drop test at 200G-2msec and 150G-10msec condition was conducted and acceleration at pick-up was compared.

A Shock Damage Evaluation Study of Large Digital TV Display Modules (대형 디지털TV Display 모듈의 내충격 설계를 위한 손상평가 연구)

  • 문성인;최재붕;김영진;서형원;이정권;구자춘
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.945-954
    • /
    • 2004
  • Recently, specifications of flat display module is going to be higher definition, brightness and more wide viewing angle. On the other hand, physical thickness of those modules is forced to be slimmer and lighter. The flat display modules such as plasma or TFT-LCD employ thin crystallized panels that are normally weak to high level transient mechanical energy inputs. As a result, anti-shock performance is one of the most important design specifications of TFT-LCD modules. TFT-LCD module manufacturers and their customers like PC or TV makers perform a series of strict impact/drop test for the modules. However most of the large display module designs are generated based on engineer's own trial-error experiences. Those designs may result in disqualification from the drop/impact test during final product evaluation. A rigorous study on the impact failure of the displays is of course necessitated in order to avoid the problems. In this article, a systematic design evaluation is presented with combinations of FEM modeling and testing to support the optimal shock proof display design procedure.

Numerical investigation on the hydraulic loss correlation of ring-type spacer grids

  • Ryu, Kyung Ha;Shin, Yong-Hoon;Cho, Jaehyun;Hur, Jungho;Lee, Tae Hyun;Park, Jong-Won;Park, Jaeyeong;Kang, Bosik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.860-866
    • /
    • 2022
  • An accurate prediction of the pressure drop along the flow paths is crucial in the design of advanced passive systems cooled by heavy liquid metal coolants. To date, a generic pressure drop correlation over spacer grids by Rehme has been applied extensively, which was obtained from substantial experimental data with multiple types of components. However, a few experimental studies have reported that the correlation may give large discrepancies. To provide a more reliable correlation for ring-type spacer grids, the current numerical study aims at figuring out the most critical factor among four hypothetical parameters, namely the flow area blockage ratio, number of fuel rods, type of fluid, and thickness of the spacer grid in the flow direction. Through a set of computational fluid dynamics simulations, we observed that the flow area blockage ratio dominantly influences the pressure loss characteristics, and thus its dependence should be more emphasized, whereas the other parameters have little impact. Hence, we suggest a new correlation for the drag coefficient as CB = Cν,m2.7, where Cν,m is formulated by a nonlinear fit of simulation data such that Cν,m = -11.33 ln(0.02 ln(Reb)).

Effects of Zn Surface Finish on the Solder Joint Microstructure and the Impact Reliability (Sn-3.5Ag 솔더와 Zn 표면층의 반응을 통한 솔더 계면현상과 충격 신뢰성에 관한 연구)

  • Jee, Young-Kun;Yu, Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.87-92
    • /
    • 2008
  • The interface microstructure of Sn-3.5Ag/Cu joint was modified by electroplating varying amount of Zn on Cu UBM. As the amount of Zn dissolved in Sn-3.5Ag solder increased with the electroplating Zn thickness, Cu-Sn IMCs such as $Cu_6Sn_5$ and $Cu_3Sn$ were replaced by Zn-containing IMCs such as $Cu_5Zn_8$ and $Ag_5Zn_8$, which increased the drop reliability of solder joints significantly. When the amount of Zn dissolved in solder was about 3.8wt%, drop resistance was best due to the effective suppression of Cu-Sn IMC and voids at the interface.

  • PDF

Board level joint reliability of differently finished PWB pad (PCB Pad finish 방법에 따른 solder의 Board level joint reliability)

  • Lee W. J.;Moon H. J.;Kim Y. H.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.02a
    • /
    • pp.37-59
    • /
    • 2004
  • In the case of Ni/Au finished pad on the package side, the solder joint of SnAgCu system can bring brittle fracture under impact load such as drop test. Therefore, it's difficult to prevent the brittle fracture of lead-free solder, by controlling Cu content. The failure locus existing on the interface between $(Ni,Cu)_3Sn_4\;and\;(Cu,Ni)_6Sn_5$ IMC layers must be changed to other site in order to avoid brittle fracture due to impact load. It was not found any clear evidence that there were two IMC layers exist. But it was strongly assumed these were two layers which have different Cu-Ni composition. From the above analysis it was assumed that Cu atom in the solder alloy or substrate seemed to affect IMC composition and cause to IMC brittle fracture.

  • PDF

A Study on the Characterization of Electroless and Electro Plated Nickel Bumps Fabricated for ACF Application (무전해 및 전해 도금법으로 제작된 ACF 접합용 니켈 범프 특성에 관한 연구)

  • Jin, Kyoung-Sun;Lee, Won-Jong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.3
    • /
    • pp.21-27
    • /
    • 2007
  • Nickel bumps for ACF(anisotropic conductive film) flip chip application were fabricated by electroless and electro plating and their mechanical properties and impact reliability were examined through the compressive test, bump shear test and drop test. Stress-displacement curves were obtained from the load-displacement data in the compressive test using nano-indenter. Electroplated nickel bumps showed much lower elastic stress limits (70MPa) and elastic moduli ($7.8{\times}10^{-4}MPa/nm$) than electroless plated nickel bumps ($600-800MPa,\;9.7{\times}10^{-3}MPa/nm$). In the bump shear test, the electroless plated nickel bumps were deformed little by the test blade and bounded off from the pad at a low shear load, whereas the electroplated nickel bumps allowed large amount of plastic deformation and higher shear load. Both electroless and electro plated nickel bumps bonded by ACF flip chip method showed high impact reliability in the drop impact test.

  • PDF

Reliability Assessment of Impact Tensile Testing Apparatus using a Drop-bar Striker for Intermediate Strain-rate Range and Evaluation of Dynamic Deformation Behaviors for a Carbon Steel (중간 변형률속도용 낙추식 충격 인장시험 장치의 신뢰성 확보 및 탄소강의 동적변형거동 평가)

  • Bae, Kyung Oh;Kim, Dae Woong;Shin, Hyung Seop;Park, Lee Ju;Kim, Hyung Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.573-579
    • /
    • 2016
  • Studies on the deformation behavior of materials subjected to impact loads have been carried out in various fields of engineering and industry. The deformation and fracture of members for these machines/structures are known to correspond to the intermediate strain-rate region. Therefore, for the structural design, it is necessary to consider the dynamic deformation behavior in these intermediate strain-rate ranges. However, there have been few reports with useful data about the deformation and fracture behavior at intermediate strain-rate ranges. Because the intermediate strain-rate region is located between quasi-static and high strain-rate regions, it is difficult to obtain the intermediate strain-rate using conventional reasonable test equipment. To solve this problem, in this study, the measurement reliability of the constructed drop-bar impact tensile test apparatus was established and the dynamic behavior at the intermediate strain-rate range of carbon steels was evaluated by utilizing the apparatus.