• Title/Summary/Keyword: Drones Image

Search Result 142, Processing Time 0.032 seconds

Design of Water Surface Hovering Drone for Underwater Stereo Photography (수중 입체촬영을 위한 수면호버링 드론 설계)

  • Kim, Hyeong-Gyun;Kim, Yong-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.6
    • /
    • pp.7-12
    • /
    • 2019
  • In order to shoot underwater, the photographer must be equipped with shooting equipment and enter into the water. Since the photographer directly enters the water, safety accidents occur frequently due to various obstacles or deep water in the water. The proposed underwater stereo photography technique can solve the safety accident problem caused by the entry of the photographer into the water by using the drone for underwater photographing. In addition, this technique has the advantage of obtaining underwater images at low cost. In this study, the angle of the proposed cam for stereoscopic photography was analyzed and the condition that the proper stereoscopic image can be viewed was defined as the distance from the floor of 18cm to the floor distance of 41.4cm. This provision is proposed to be used to adjust the height of the shooting area descended by the elevation chain of the water surface hovering drones.

A Review on Deep Learning Platform for Artificial Intelligence (인공지능 딥러링 학습 플랫폼에 관한 선행연구 고찰)

  • Jin, Chan-Yong;Shin, Seong-Yoon;Nam, Soo-Tai
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.169-170
    • /
    • 2019
  • Lately, as artificial intelligence becomes a source of global competitiveness, the government is strategically fostering artificial intelligence that is the base technology of future new industries such as autonomous vehicles, drones, and robots. Domestic artificial intelligence research and services have been launched mainly in Naver and Kakao, but their size and level are weak compared to overseas. Recently, deep learning has been conducted in recent years while recording innovative performance in various pattern recognition fields including speech recognition and image recognition. In addition, deep running has attracted great interest from industry since its inception, and global information technology companies such as Google, Microsoft, and Samsung have successfully applied deep learning technology to commercial products and are continuing research and development. Therefore, we will look at artificial intelligence which is attracting attention based on previous research.

  • PDF

Research of the Delivery Autonomy and Vision-based Landing Algorithm for Last-Mile Service using a UAV (무인기를 이용한 Last-Mile 서비스를 위한 배송 자동화 및 영상기반 착륙 알고리즘 연구)

  • Hanseob Lee;Hoon Jung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.160-167
    • /
    • 2023
  • This study focuses on the development of a Last-Mile delivery service using unmanned vehicles to deliver goods directly to the end consumer utilizing drones to perform autonomous delivery missions and an image-based precision landing algorithm for handoff to a robot in an intermediate facility. As the logistics market continues to grow rapidly, parcel volumes increase exponentially each year. However, due to low delivery fees, the workload of delivery personnel is increasing, resulting in a decrease in the quality of delivery services. To address this issue, the research team conducted a study on a Last-Mile delivery service using unmanned vehicles and conducted research on the necessary technologies for drone-based goods transportation in this paper. The flight scenario begins with the drone carrying the goods from a pickup location to the rooftop of a building where the final delivery destination is located. There is a handoff facility on the rooftop of the building, and a marker on the roof must be accurately landed upon. The mission is complete once the goods are delivered and the drone returns to its original location. The research team developed a mission planning algorithm to perform the above scenario automatically and constructed an algorithm to recognize the marker through a camera sensor and achieve a precision landing. The performance of the developed system has been verified through multiple trial operations within ETRI.

Evaluation of Rededge-M Camera for Water Color Observation after Image Preprocessing (영상 전처리 수행을 통한 Rededge-M 카메라의 수색 관측에의 활용성 검토)

  • Kim, Wonkook;Roh, Sang-Hyun;Moon, Yongseon;Jung, Sunghun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.167-175
    • /
    • 2019
  • Water color analysis allows non-destructive estimation of abundance of optically active water constituents in the water body. Recently, there have been increasing needs for light-weighted multispectral cameras that can be integrated with low altitude unmanned platforms such as drones, autonomous vehicles, and heli-kites, for the water color analysis by spectroradiometers. This study performs the preprocessing of the Micasense Rededge-M camera which recently receives a growing attention from the earth observation community for its handiness and applicability for local environment monitoring, and investigates the applicability of Rededge-M data for water color analysis. The Vignette correction and the band alignment were conducted for the radiometric image data from Rededge-M, and the sky, water, and solar radiation essential for the water color analysis, and the resultant remote sensing reflectance were validated with an independent hyperspectral instrument, TriOS RAMSES. The experiment shows that Rededge-M generally satisfies the basic performance criteria for water color analysis, although noticeable differences are observed in the blue (475 nm) and the near-infrared (840 nm) band compared with RAMSES.

Application of 3D point cloud modeling for performance analysis of reinforced levee with biopolymer (3차원 포인트 클라우드 모델링 기법을 활용한 바이오폴리머 기반 제방 보강공법의 성능 평가)

  • Ko, Dongwoo;Kang, Joongu;Kang, Woochul
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.3
    • /
    • pp.181-190
    • /
    • 2021
  • In this study, a large-scale levee breach experiment from lateral overflow was conducted to verify the effect of the new reinforcement method applied to the levee's surface. The new method could prevent levee failure and minimize damage caused by overflow in rivers. The levee was designed at the height of 2.5 m, a length of 12 m, and a slope of 1:2. A new material mixed with biopolymer powder, water, weathered granite, and loess in an appropriate ratio was sprayed on the levee body's surface at a thickness of about 5 cm, and vegetation recruitment was also monitored. At the Andong River Experiment Center, a flow (4 ㎥/s) was introduced from the upstream of the A3 channel to induce the lateral overflow. The change of lateral overflow was measured using an acoustic doppler current profiler in the upstream and downstream. Additionally, cameras and drones were used to analyze the process of the levee breach. Also, a new method using 3D point cloud for calculating the surface loss rate of the levee over time was suggested to evaluate the performance of the levee reinforcement method. It was compared to existing method based on image analysis and the result was reasonable. The proposed 3D point cloud methodology could be a solution for evaluating the performance of levee reinforcement methods.

Fabrication of Three-Dimensional Scanning System for Inspection of Mineshaft Using Multichannel Lidar (다중채널 Lidar를 이용한 수직갱도 조사용 3차원 형상화 장비 구현)

  • Soolo, Kim;Jong-Sung, Choi;Ho-Goon, Yoon;Sang-Wook, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.451-463
    • /
    • 2022
  • Whenever a mineshaft accidentally collapses, speedy risk assessment is both required and crucial. But onsite safety diagnosis by humans is reportedly difficult considering the additional risk of collapse of the unstable mineshaft. Generally, drones equipped with high-speed lidar sensors can be used for such inspection. However, the drone technology is restrictively applicable at very shallow depth, failing in mineshafts with depths of hundreds of meters because of the limit of wireless communication and turbulence inside the mineshaft. In previous study, a three-dimensional (3D) scanning system with a single channel lidar was fabricated and operated using towed cable in a mineshaft to a depth of 200 m. The rotation and pendulum movement errors of the measuring unit were compensated for by applying the data of inertial measuring unit and comparing the similarity between the scan data of the adjacent depths (Kim et al., 2020). However, the errors grew with scan depth. In this paper, a multi-channel lidar sensor to obtain a continuous cross-sectional image of the mineshaft from a winch system pulled from bottom upward. In this new approach, within overlapped region viewed by the multi-channel lidar, rotation error was compensated for by comparing the similarity between the scan data at the same depth. The fabricated system was applied to scan 0-165 m depth of the mineshaft with 180 m depth. The reconstructed image was depicted in a 3D graph for interpretation.

A study on the utilization of drones and aerial photographs for searching ruins with a focus on topographic analysis (유적탐색을 위한 드론과 항공사진의 활용방안 연구)

  • Heo, Ui-Haeng;Lee, Wal-Yeong
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.2
    • /
    • pp.22-37
    • /
    • 2018
  • Unmanned aerial vehicles (UAV) have attracted considerable attention both at home and abroad. The UAV is equipped with a camera that shoots images, which is advantageous for access to areas where archaeological investigations are not possible. Moreover, it is possible to acquire three-dimensional spatial image information by modeling the terrain through aerial photographing, and it is possible to specify the interpretation of the terrain of the survey area. In addition, if we understand the change of the terrain through comparison with past aerial photographs, it will be very helpful to grasp the existence of the ruins. The terrain modeling for searching these remains can be divided into two parts. First, we acquire the aerial photographs of the current terrain using the drone. Then, using image registration and post-processing, we complete the image-joining and terrain-modeling using past aerial photographs. The completed modeled terrain can be used to derive several analytical results. In the present terrain modeling, terrain analysis such as DSM, DTM, and altitude analysis can be performed to roughly grasp the characteristics of the change in the form, quality, and micro-topography. Past terrain modeling of aerial photographs allows us to understand the shape of landforms and micro-topography in wetlands. When verified with actual findings and overlapping data on the modelling of each terrain, it is believed that changes in hill shapes and buried Microform can be identified as helpful when used in low-flying applications. Thus, modeling data using aerial photographs is useful for identifying the reasons for the inability to carry out archaeological surveys, the existence of terrain and ruins in a wide area, and to discuss the preservation process of the ruins. Furthermore, it is possible to provide various themes, such as cadastral maps and land use maps, through comparison of past and present topographical data. However, it is certain that it will function as a new investigation methodology for the exploration of ruins in order to discover archaeological cultural properties.

A Study on the Applicability of Deep Learning Algorithm for Detection and Resolving of Occlusion Area (영상 폐색영역 검출 및 해결을 위한 딥러닝 알고리즘 적용 가능성 연구)

  • Bae, Kyoung-Ho;Park, Hong-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.305-313
    • /
    • 2019
  • Recently, spatial information is being constructed actively based on the images obtained by drones. Because occlusion areas occur due to buildings as well as many obstacles, such as trees, pedestrians, and banners in the urban areas, an efficient way to resolve the problem is necessary. Instead of the traditional way, which replaces the occlusion area with other images obtained at different positions, various models based on deep learning were examined and compared. A comparison of a type of feature descriptor, HOG, to the machine learning-based SVM, deep learning-based DNN, CNN, and RNN showed that the CNN is used broadly to detect and classify objects. Until now, many studies have focused on the development and application of models so that it is impossible to select an optimal model. On the other hand, the upgrade of a deep learning-based detection and classification technique is expected because many researchers have attempted to upgrade the accuracy of the model as well as reduce the computation time. In that case, the procedures for generating spatial information will be changed to detect the occlusion area and replace it with simulated images automatically, and the efficiency of time, cost, and workforce will also be improved.

Estimating the Stand Level Vegetation Structure Map Using Drone Optical Imageries and LiDAR Data based on an Artificial Neural Networks (ANNs) (인공신경망 기반 드론 광학영상 및 LiDAR 자료를 활용한 임분단위 식생층위구조 추정)

  • Cha, Sungeun;Jo, Hyun-Woo;Lim, Chul-Hee;Song, Cholho;Lee, Sle-Gee;Kim, Jiwon;Park, Chiyoung;Jeon, Seong-Woo;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.653-666
    • /
    • 2020
  • Understanding the vegetation structure is important to manage forest resources for sustainable forest development. With the recent development of technology, it is possible to apply new technologies such as drones and deep learning to forests and use it to estimate the vegetation structure. In this study, the vegetation structure of Gongju, Samchuk, and Seoguipo area was identified by fusion of drone-optical images and LiDAR data using Artificial Neural Networks(ANNs) with the accuracy of 92.62% (Kappa value: 0.59), 91.57% (Kappa value: 0.53), and 86.00% (Kappa value: 0.63), respectively. The vegetation structure analysis technology using deep learning is expected to increase the performance of the model as the amount of information in the optical and LiDAR increases. In the future, if the model is developed with a high-complexity that can reflect various characteristics of vegetation and sufficient sampling, it would be a material that can be used as a reference data to Korea's policies and regulations by constructing a country-level vegetation structure map.

Comparison of Topographic Surveying Results using a Fixed-wing and a Popular Rotary-wing Unmanned Aerial Vehicle (Drone) (고정익 무인항공기(드론)와 보급형 회전익 무인항공기를 이용한 지형측량 결과의 비교)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • Recently, many studies have been conducted to use fixed-wing and rotary-wing unmanned aerial vehicles (UAVs, Drones) for topographic surveying in open-pit mines. Because the fixed-wing and rotary-wing UAVs have different characteristics such as flight height, speed, time and performance of mounted cameras, their results of topographic surveying at a same site need to be compared. This study selected a construction site in Yangsan-si, Gyeongsangnam-do, Korea as a study area and compared the topographic surveying results from a fixed-wing UAV (SenseFly eBee) and a popular rotary-wing UAV (DJI Phantom2 Vision+). As results of data processing for aerial photos taken from eBee and Phantom2 Vision+, orthomosaic images and digital surface models with about 4 cm grid spacing could be generated. Comparisons of the X, Y, Z-coordinates of 7 ground control points measured by differential global positioning system and those determined by eBee and Phantom2 Vision+ revealed that the root mean squared errors of X, Y, Z-coordinates were around 10 cm, respectively.