• Title/Summary/Keyword: Drone Altitude

Search Result 93, Processing Time 0.024 seconds

The Development of Mortar POLAR Program with Windward Wind Speed use Drones (드론을 활용한 풍향풍속이 적용된 박격포용 극표정법 프로그램 개발)

  • Hui Huang;Jung Hwan Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.4
    • /
    • pp.185-194
    • /
    • 2023
  • Currently, drones are used in various fields such as transportation, agriculture and military. Especially, drones for military use are developed and utilized in many ways such as reconnaissance and bombing to minimize one's own damages. Nevertheless, they are developed as new weapons of modern types, so it is difficult to use them together with existing weapons. In this study, a drone program for effective bombing of mortar, which is often used in modern warfare, is developed. In mortar, a forward soldier comprehends the location of enemy for its distance and altitude, input them in data computer of launching angle, and applies the result value to cannon to launch. However, the existing method has low accuracy of bombing because observing shall be done within 1km from the target, and measuring accurate direction and velocity of the wind is difficult. Whereas, in the program of this study, the location of target, GPS, direction and velocity of the wind, and altitude are measured through drone. Each digit is used to calculate bombing specification for optimal bombing through the calculating formula of launching angle. In addition, when specifications are input in the program, the calculation is done automatically, so that it can be used in various mortars and shells. With the use of the program in this study, the location of enemy can be comprehended, and bombing specifications can be calculated quickly. It also enables the intensity of the wind to be applied for accurate bombing.

Detection and Classification for Low-altitude Micro Drone with MFCC and CNN (MFCC와 CNN을 이용한 저고도 초소형 무인기 탐지 및 분류에 대한 연구)

  • Shin, Kyeongsik;Yoo, Sinwoo;Oh, Hyukjun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.364-370
    • /
    • 2020
  • This paper is related to detection and classification for micro-sized aircraft that flies at low-altitude. The deep-learning based method using sounds coming from the micro-sized aircraft is proposed to detect and identify them efficiently. We use MFCC as sound features and CNN as a detector and classifier. We've proved that each micro-drones have their own distinguishable MFCC feature and confirmed that we can apply CNN as a detector and classifier even though drone sound has time-related sequence. Typically many papers deal with RNN for time-related features, but we prove that if the number of frame in the MFCC features are enough to contain the time-related information, we can classify those features with CNN. With this approach, we've achieved high detection and classification ratio with low-computation power at the same time using the data set which consists of four different drone sounds. So, this paper presents the simple and effecive method of detection and classification method for micro-sized aircraft.

A Study on the Flight Safety Test of Drones for the Establishment of Toy Drone Safety Standards (완구용 드론 안전기준 재정을 위한 드론의 비행 안전성 테스트 연구)

  • Jin, Jung-Hoi;Kim, Gyou-Beom;Jin, Sae-Young
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.12
    • /
    • pp.141-146
    • /
    • 2019
  • Economic analysis predicts that the drone market will grow, and the growth of the toy and hobby drone market is expected to gradually expand. Drone expectations are rising due to the net economic function of drone market growth, but accidents due to improper management and operations are also increasing. The difference in toy drone performance is incomparably small compared to industrial drone performance, but the ordinary buyer can not know whether the difference can cause an accident during use. The toy drones used in this study were obtained from KC and CE certification, and 20 kinds of drones were used. The flight time ranged from a minimum of 3 minutes to a maximum of 12 minutes, and the control distance ranged from a minimum of 20m to a maximum of 380m. Therefore, it is necessary to secure product safety through sampling inspection of the radio wave output of toy drones, and it is also necessary to mount an algorithm that automatically lowers the altitude or hover when exceeding the limit flight distance. For future research, we will build data to establish toy drone safety standards through a altitude testing and impact testing of toy drone.

Analysis of Iran's Air Defense Network and Implications for the Development of South Korea's Air Defense Network

  • Hwang Hyun-Ho
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.2
    • /
    • pp.249-257
    • /
    • 2024
  • This study analyzes the current status and prospects of Iran's air defense network, focusing on the Russian-made S-300 system, and derives implications for the development of South Korea's air defense network. Iran's air defense network exhibits strengths such as long-range detection and interception capabilities, multi-target processing, high-altitude interception, and electronic warfare response. However, it also reveals weaknesses, including lack of mobility, difficulty in detecting low-altitude targets, obsolescence, training level of operating personnel, and vulnerability to electronic warfare. Real-world cases confirm these weaknesses, making the system susceptible to enemy evasion tactics, swarm drone attacks, and electronic warfare. Drawing from Iran's case, South Korea should establish a multi-layered defense system, strengthen low-altitude air defense and electronic warfare capabilities, foster the domestic defense industry for technological self-reliance, and enhance international cooperation. By addressing these aspects, South Korea can establish a robust air defense network and firmly protect its national security. Future research should aim to secure and analyze materials from the Iranian perspective for a more objective evaluation of Iran's air defense network and continuously track Iran's efforts to improve its air defense network and the trend of strengthening drone forces to predict changes in the Middle East security situation.

An Implementation of Formation Flight Control System Using Two Drones (두 대의 드론을 이용한 편대 비행 제어 시스템 구현)

  • Kim, Dong-Jin;Park, Young-Seak
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.6
    • /
    • pp.343-351
    • /
    • 2016
  • In this study, we implemented a formation flight control system using two drones. Ground control system communicates with drones by MAVLink protocol, does keep watch on drone's status and sends simultaneously formation flight instructions to drones in real time. Two drones have been able to fly by a formation flight algorithm without crashing while maintaining the same speed, and a constant distance and altitude.

Autonomous Flight of a Drone that Adapts to Altitude Changes (고도 변화에 적응하는 드론의 자율 비행)

  • Jang-Won Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.448-453
    • /
    • 2023
  • As the production of small quadcopter drones has diversified and multi-sensors have been installed in FC due to the spread of MCU capable of high-speed processing, small drones that can perform special-purpose operations rather than simple operations have been realized. Hovering, attitude control, and position movement control were possible through the IMU in the FC mounted on the drone, but control is not easy when GPS connection and video communication are not possible in a closed building with a complex structure. In this study, when encountering an obstacle with a change in altitude in such a space, we proposed a method to overcome the obstacle and perform autonomous flight using optical flow and IR sensors using the Lucas-Kanade method. Through experiments, the drone's altitude flight on stairs that replace the complex structure of a closed space with stable hovering motion has a success rate of 98% within the tolerance of 10 [cm] due to external influences, and reliable autonomous flight up and down is achieved.

Real-time Tele-operated Drone System with LTE Communication (LTE 통신을 이용한 실시간 원격주행 드론 시스템)

  • Kang, Byoung Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.35-40
    • /
    • 2019
  • In this research, we suggest a real-time tele-driving system for unmanned drone operations using the LTE communication system. The drone operator is located 180km away and controls the altitude and position of the drone with a 50ms time delay. The motion data and video from the drone is streamed to the operator. The video is played on the operator's head-mounted display (HMD) and the motion data emulates the drone on the simulator for the operator. In general, a drone is operated using RF signal and the maximum distance for direct control is limited to 2km. For long range drone control over 2km, an auto flying mode is enabled using a mission plan along with GPS data. In an emergency situation, the autopilot is stopped and the "return home" function is executed. In this research, the immersion tele-driving system is suggested for drone operation with a 50ms time delay using LTE communication. A successful test run of the suggested tele-driving system has already been performed between an operator in Daejeon and a drone in Inje (Gangwon-Do) which is approximately 180km apart.

A Study on Filling the Spatio-temporal Observation Gaps in the Lower Atmosphere by Guaranteeing the Accuracy of Wind Observation Data from a Meteorological Drone (기상드론 바람관측자료의 정확도 확보를 통한 대기하층 시공간 관측공백 해소 연구)

  • Seung-Hyeop Lee;Mi Eun Park;Hye-Rim Jeon;Mir Park
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.441-456
    • /
    • 2023
  • The mobile observation method, in which a meteorological drone observes while ascending, can observe the vertical profile of wind at 1 m-interval. In addition, since continuous flights are possible at time intervals of less than 30 minutes, high-resolution observation data can be obtained both spatially and temporally. In this study, we verify the accuracy of mobile observation data from meteorological drone (drone) and fill the spatio-temporal observation gaps in the lower atmosphere. To verify the accuracy of mobile observation data observed by drone, it was compared with rawinsonde observation data. The correlation coefficients between two equipment for a wind speed and direction were 0.89 and 0.91, and the root mean square errors were 0.7 m s-1 and 20.93°. Therefore, it was judged that the drone was suitable for observing vertical profile of the wind using mobile observation method. In addition, we attempted to resolve the observation gaps in the lower atmosphere. First, the vertical observation gaps of the wind profiler between the ground and the 150 m altitude could be resolved by wind observation data using the drone. Secondly, the temporal observation gaps between 3-hour interval in the rawinsonde was resolved through a drone observation case conducted in Taean-gun, Chungcheongnam-do on October 13, 2022. In this case, the drone mobile observation data every 30-minute intervals could observe the low-level jet more detail than the rawinsonde observation data. These results show that the mobile observation data of the drone can be used to fill the spatio-temporal observation gaps in the lower atmosphere.

Simulation Modeling for Performance Analysis of Drone-type Base Station on the Millimeter-wave Frequency Band (밀리미터파 대역에서의 드론형 기지국 성능분석을 위한 시뮬레이션 모델링 연구)

  • Jeong, Min-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.825-836
    • /
    • 2019
  • The drone-type base station will be an optimal platform as a way of information sharing for efficient operation of the military force due to their high network flexibility. It is expected that the characteristics of the drone-type base station which would freely adjust the altitude can be used to offset the propagation attenuation characteristics of the millimeter-wave frequency band by securing the stable Line of Sight. In this paper, we proposed a framework for evaluation drone-type base station that can be utilized as a future military communication network by performing modeling for performance analysis that can reflect various factors.

W-Band Radar Altimeter for Drones (드론용 W-대역 레이다 고도계)

  • Lee, Yong-Seok;Lee, Gwon-Hak;Kim, Jun-Seong;Park, Jae-Hyun;Kim, Byung-Sung;Song, Reem
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.314-319
    • /
    • 2019
  • In this study, we propose a W-band frequency modulated continuous wave(FMCW) radar altimeter that can measure the altitude based on the frequency differences of transmitted and received signals. This W-band FMCW system is powered by an altitude control algorithm, which we propose to help prevent collisions of drones with obstacles in real deployment by measuring the relative altitude. It is shown that this algorithm enables the drone to be positioned within a 3 % error of altitude from the desired input height. The chip used in the W-band transmitter and receiver was fabricated using a 65-nm CMOS process, and a horn antenna was directly fed by incorporating an embedded waveguide feeder into the chip. The clutter spectra observed in terrains including soil, grass, and calm lake water were measured and compared, confirming the reflectivity characteristics of various surfaces of different water contents.