• Title/Summary/Keyword: Driving velocity

Search Result 526, Processing Time 0.032 seconds

Vehicle tracking algorithm using the hue transform in HIS color model (HIS 칼라모델에서 색상 변환을 이용한 자동차 추적 알고리즘)

  • Lee, Joo-Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.1
    • /
    • pp.130-139
    • /
    • 2011
  • In this paper, vehicle tracking algorithm using hue transformation in HIS color model is proposed. the proposed algorithm is installed on the road of the two horizontal virtual data sampling lines. The difference images are detected between the frame and the frame, respectively and also detected in the vehicle by using the hue color distribution to determine identity and lane changes. To examine the effectiveness of proposed algorithm, identification and velocity measurement for driving vehicle are evaluated. this evaluated results is shown by hue data of vehicle passing of two virtual data sample lines, and the velocity measurement for driving vehicle is less than 0.4% comparing with existing vehicle speed meter system.

STUDY ON COOLING PERFORMANCE BY CONVECTIVE HEAT TRANSFER WITH DIFFERENT DISK BRAKE SHAPES (브레이크 디스크 형상에 따른 대류열전달에 의한 방열성능 연구)

  • Park, C.W.;Lee, D.R.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.64-71
    • /
    • 2016
  • This research is to numerically investigate the convective cooling performance in the Disk brake. Research concentrates on the heat transfer coefficient and cooling performance which are selected with cooling local locations. Cooling performance of the Hole disk has been compared by Ventilated Disk. According to the results of heat transfer on the disk brake, activated velocity distributions more appear in the Hole disk. This is due to the fact that a number of hole units have exactly 120 on the surface of the hole disk. Therefore, velocity distributions of hole disk brake is better activated than Ventilated disk. According to the calculations of Nusselt number between surface and atmosphere in the interested cooling area, average value of cooling effect has been increased 13.5% by the hole disk at driving of speed 65 km/h situation and grown 18% by the hole disk at driving speed of 100 km/h. Due to the flow of air through the hole route, cooling performance of the hole disk was very excellent. In addition, cooling effect on edge of the bottom is better than the vicinity of center.

Inverse Dynamic Analysis for Various Drivings in Kinematic Systems (기구학적 시스템에 있어서 구동방법에 따른 역동역학 해석)

  • Lee, Byung Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.869-876
    • /
    • 2017
  • Analysis of actuating forces and joint reaction forces are essential to determine the capacity of actuators, to control the mechanical system and to design its components. This paper presents an algorithm that calculates actuating forces(or torques), depending on the various types of driving constraints, in order to produce a given system motion in the joint coordinate space. The joint coordinates are used as the generalized coordinates of a kinematic system. System equations of motion and constraint acceleration equations are transformed from the Cartesian coordinate space to the joint coordinate space using the velocity transformation method. A numerical example is carried out to verify the algorithm proposed.

Dynamic Modeling and Performance Improvement of a Unicycle Robot (외바퀴 로봇 다이나믹 모델과 성능 개선)

  • Kim, Sung-Ha;Lee, Jae-Oh;Hwang, Jong-Myung;Ahn, Bu-Hwan;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1074-1081
    • /
    • 2010
  • Today, the research related to the robot is achieved in various part. With the high interest in means of transport, various researches about autonomous mobile robot and next generation transport is continuing. The unicycle robot among these needs much control technique like balance control model and driving model. For autonomous driving of this unicycle robot, from the basic balance control to direction switching control and velocity control are needed. But the environment elements like a gradient and frictional force or unbalanced elements from the structural feature. The unicycle needs the real time balance control so more complex, harder to control. And when functional addition is made, the problem that fall entire reaction velocity or accuracy would be happen. This paper introduces entire dynamics modeling of the unicycle robot and reduced model. And propose the new balance control algorithm using fuzzy controller. Also the evaluation about performance would be made through the test.

Vibration response of the boat composite shafting having constant velocity joint during change of the operation regime

  • Shuripa, V.-A;Kim, J.-R;Kil, B.-L;Kim, Y.-H;Jeon, H.-J
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.382-392
    • /
    • 2004
  • The usage of constant velocity (CV) joint is effective for motorboats on gliding regime of the motion. During transition on the gliding when angle of the CV differs from null on driving and driven composite shafts there are moments of the second order. Excitation of oscillations of the second order moments occurs when driving shafts transmits a variable torque. which generates through CV joint a lateral moment acting on the bearing. As a result of oscillations from a resonating harmonic of a shafting the harmonic with the greater or periodically varying amplitude for power condition trough transferring to nominal power 144kW. Beating conditions coincide with third mode having frequency 45.486 Hz. In that case there is high increasing of the equivalent stresses. The forming of the stiffness of the composite material is concerned to use most orientation of the layer angle in the range of $\pm$60 degrees relatively of shaft axis. Application of that angles for layer orientation gives possibility to avoid high disturbance of the shafting for motorboat transition regime.

Development and Verification of Measuring Tester for Generated Axial Force at Constant Velocity Joints (등속조인트에서 발생하는 축력 측정장치 개발 및 검증)

  • Lee, Kwang-Hee;Lee, Deuk-Won;Lee, Chul-Hee;Yun, Hyuk-Chae;Cho, Won-Oh
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.328-332
    • /
    • 2012
  • Generated Axial Force (GAF) due to internal friction at Constant Velocity (CV) joints is one of the causes generating vibration problems such as shudder in vehicle. In this study, the GAF measuring tester is developed to precisely measure GAF caused by internal friction in CV joints. As the developed tester can control temperature at joint, driving torque, angle of rotation and joint angles, actual driving conditions such as sudden acceleration can be applied to the machine. GAFs are measured and compared by using different types of grease in tripod housing. Also GAFs are measured for both new and used CV joints to be compared and analyzed. The test result shows the repeatability and consistency of the tester in terms of the different test conditions. By using the developed CV joint tester, friction performance of the joint can be evaluated by proposing the best CV joints as well as greases generating the lowest GAF.

Characteristic Analysis of High Speed Inkjet Printing Head for Digital Textile Printing (디지털날염용 고속 구동형 잉크젯 프린팅 헤드의 특성해석)

  • Lee, Duck-Gyu;Hur, Shin
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.421-426
    • /
    • 2018
  • To develop a piezoelectric inkjet printhead for high-resolution and high-speed printing, we studied the characteristics of an inkjet printhead by analyzing the major design parameters. An analytical model for the inkjet printhead was established, and numerical analysis of the coupled first-order differential equation for the defined state variables was performed using state equations. To design the dimension of the inkjet printhead with a driving frequency of 100 kHz, the characteristics of the flow rate and discharge pressure of the nozzle were analyzed with respect to design variables of the flow chamber, effective sound wave velocity, driving voltage, and voltage waveform. It was predicted that the change in the height of the flow chamber does not significantly affect the Helmholtz resonance frequency and discharge speed of the nozzle. From the analysis of change in flow chamber width, it is observed that as the width of the flow chamber increases, the ejection speed greatly increases and the Helmholtz resonance frequency decreases considerably, thereby substantially affecting the performance of the inkjet printhead.

Analysis on the motion characteristics of surface XY aerostatic stage (평면 XY 공기정압 스테이지의 운동특성 분석)

  • 황주호;박천홍;이찬홍;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.359-362
    • /
    • 2003
  • The aerostatic stage. which is used in semiconductor process, is demanded higher velocity and more precise accuracy for higher productivity and integrated performance. So, in the case of XY stage, H type structure, which is designed two co-linear axis of guide-way, driving force in one surface, has advantage of velocity and accuracy compared to conventional tacked type XY stage. To analyze characteristics of H type aerostatic stage, H type aerostatic surface XY stage is made, which is driven by linear motor and detected position with precise optical linear scale. And, analyze characteristics of motion error, effect of angular motion on positioning accuracy error and effect of simultaneous control on variation of velocity.

  • PDF

A Study on the Flow Characteristics of Cubic Cavity with driven Flow (구동류를 갖는 입방형 캐비티의 유동특성에 관한 연구)

  • 최민선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.935-941
    • /
    • 1998
  • Experiments were carried out for a cubic cavity flow. Contrinuous shear stress is supplied by driven flow for high Reynolds number and three kinds of aspect ratios. Velocity vectors are obtained by PIV and they are used as velocity components for Poisson equation for pressure, Related boundary conditions and no-slip condition at solid wall and the linear velocity extrapolation on the upper side of cavity are well examined for the present study. For calculation of pressure resolution of grid is basically $40{\times}40$ and 2-dimensional uniform mesh using MSC staggered grid is adopted. The flow field within the cavity maintains a forced-vortex formation and almost of the shear stress from the driving inflow is transformed into rotating flow energy and the size of the distorted forced-vortex increases with increment of Reynolds number

  • PDF

PIV Measurements of Ventilation Flow inside a Passenger Compartment (PIV를 이용한 실차 내부 환기유동의 정량적 속도장 측정)

  • Lee, Jin-Pyung;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.3
    • /
    • pp.24-29
    • /
    • 2011
  • The improvement of climatic comfort is crucial not only for passenger comfort but also for driving safety. Therefore, a better understanding on the flow characteristics of ventilation flow inside the passenger compartment is essential. Most of the previous studies investigated the ventilation flow using Computational Fluid Dynamics (CFD) calculations or scale-down water-model experiments. In this study, the ventilation flow inside the passenger compartment of a real commercial automobile was investigated using a Particle Image Velocimetry (PIV) velocity field measurement technique. Under real operating conditions, the velocity fields were measured at several vertical planes for several ventilation modes. The experimental data obtained from this study can be used to understand the detailed flow characteristics in the passenger compartment of a real car and to validate numerical predictions.