• Title/Summary/Keyword: Driving trajectory

Search Result 122, Processing Time 0.024 seconds

The Statistical Correlation Between Continuous Driving Time and Drowsy Accidents (연속주행시간과 졸음사고간 통계적 상관관계 분석)

  • KIM, Ducknyung;KIM, Sujin;CHOI, Jaeheon;CHO, Jongseok
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.5
    • /
    • pp.423-433
    • /
    • 2017
  • During recent 5 years, it was recorded that 20% of total accident frequency and 30% of total number of death have been occurred due to drowsy driving. Drowsy driving accident is result from the loss of driving ability due to driver's accumulated fatigue. Continuous driving time can be measured as a surrogate variable to quantify the level of fatigue. The main purpose of this research is to investigate statistical correlation between the proportion of continuous driving vehicle (more than 2 hours) and the number of drowsy accidents. To carry this out, continuous driving time was measured using GPS route-guidance trajectory data. Also, accident frequency, traffic volume and segment length were collected to estimate safety performance function (SPF) for Jungbunearuk expressway in Korea. Through various types of estimated SPFs, statistical correlation was analyzed based on estimated statistical indices. This research can provide theoretical background for enforcement to regulate commercial vehicle driver's continuous driving time. In addition, throughout the trajectory data expansion, it is expected that strategy for anti-drowsy driving facilities installation can be established based on the suggested methodology.

Trajectory Optimization of Flexible Manipulators (유연마니퓨레이터의 궤도최적화)

  • 이승재;최연선;야마카와히로시
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.979-983
    • /
    • 2001
  • We develop a new method of simultaneous optimization of trajectory and shape of redundant flexible manipulators for collision-free utilizing the B-spline function and a mathematical programming method We adopt an approximate flexible manipulator model which consists of rigid bar elements and spring elements. We use B-spline function for determining the approximate trajectory and the expressions of the outline of obstacles. The used total performance index consists of 2 performance indices. The first is the driving energy, and the second is the trajectory deviation which is caused by the approximate modeling for the flexible manipulator. We design optimal collision-free trajectory of flexible manipulators by searching optimum positions of the control points for B-spline approximation which minimize the performance index subject to constraint condition for collision-free. Some examinations through numerical examples show the effectiveness of the method

  • PDF

Study on Reference Trajectory Planning for Vibration Suppression of 2-Mass System (2-관성 공진계의 진동 억제를 위한 기준 입력 궤적에 관한 연구)

  • Kwon, Hyuk-Sung;Lee, Hak-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.123-126
    • /
    • 2003
  • This paper presents an speed reference trajectory planning methods for vibration suppression in a t-mass resonant system which has a flexible coupling between a load and a driving motor. Due to this flexibility, the system often suffers vibration especially when the motor is controlled for higher speed command. The steady state conditions are utilized to derive desired load speed trajectory which does not cause the torsional vibration. And the desired motor speed trajectory is synthesized base on the relation between load and motor speed. The simulation and experiment result suggest that the proposed method effectively suppress the vibration.

  • PDF

Backward motion control of a mobile robot with n passive trailers

  • Park, Myoung-Kuk;Chung, Woo-Jin;Kim, Mun-Sang;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1190-1195
    • /
    • 2003
  • In this paper, it is shown how a robot with n passive trailers can be controlled in backward direction. When driving backward direction, a kinematic model of the system is represented highly nonlinear equations. The problem is formulated as a trajectory following problem, rather than control of independent generalized coordinates. Also, the state and input saturation problems are formulated as a trajectory generation problem. The trajectory is traced by a rear hinge point of the last trailer, and reference trajectories include line segments, circular shapes and rectangular turns. Experimental verifications were carried out with the PSR-2(public service robot $2^{nd}$ version) with three passive trailers. Experimental result showed that the backward motion control can be successfully carried out using the proposed control scheme.

  • PDF

Real-time Obstacle Avoidance for Silvermate Robot

  • Choi, Kyung-Hyun;Kim, Chang-Jong;Nong, Minh-Ngoc
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1161-1166
    • /
    • 2007
  • This paper proposes the Elastic Force application on the obstacle avoidance of the Silvermate Robot. The method deals with the problem associated with the Silvermate robot driving to a goal configuration as avoiding obstacles. The initial trajectory of a robot is determined by a motion planner, and the trajectory modification is accomplished by adjusting the control points. The control points are obtained based on the elastic force approach. Consequently the trajectory of a robot is incrementally modified to maintain a smooth and adaptive trajectory in an environment with obstacles. The suggested algorithm drivers the robot to obstacle avoid in real-time. Finally, the simulation studies are carried out to illustrate the effectiveness of the proposed approach

  • PDF

A Study on the Real-Time Obstacle Avoidance Using Elastic Force (탄성력을 이용한 실시간 장애물 회피에 관한 연구)

  • Choi, Kyung-Hyun;Cho, Su-Jeomg;Yang, Hyoung-Chan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.33-40
    • /
    • 2007
  • This paper proposes the Elastic force application on the obstacle avoidance of Silvermate robots. The method deals with the problem associated with a Silvermate robot driving to a goal configuration as avoiding obstacles. The initial trajectory of a robot is determined by a motion planner, and the trajectory modification is accomplished by adjusting the control points. The control points are obtained based on the elastic force approach. Consequently the trajectory of a robot is incrementally modified to maintain a smooth and adaptive trajectory in an environment with obstacles. The suggested algorithm drives the robot to avoid obstacle in real-time. Finally, The simulation studies are carried out to illustrate the effectiveness of the proposed approach.

Driving of the Ball Screw Actuator Using a Global Sliding Mode Control with Bounded Inputs

  • Choi Hyeung-Sik;Son Joung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.758-768
    • /
    • 2005
  • The ball screw actuated by the electric motor is widely used as an essential actuator for driving the mechanical system by virtue of accuracy and force transmission capability. In this paper, a design of the global sliding mode control is presented to drive the ball screw actuator along the minimum time trajectory, In the proposed control scheme, if the ranges of parametric uncertainties and torque limits of the system are specified, the arrival time of the load along the minimum time trajectory can be estimated. Also, the arriving time at the reference input and the maximum acceleration are expressed in a closed form solution. Conversely, the capacity of a ball screw actuator including the motor can be easily designed if the external load and its transportation time are specified. The superior performance of the proposed control scheme and analysis is validated by the computer simulation and experiments comparing with other sliding mode controllers.

Extended Feedback Control based on Impulse Response for Lane Change of Autonomous Driving Vehicle (자율 주행 차량의 차선 변경을 위한 충격 응답 기반 상태 확장 되먹임 제어)

  • Sangyoon Kim;Kyongsu Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.3
    • /
    • pp.17-26
    • /
    • 2023
  • This paper presents extended state feedback control based on impulse response for lane change of autonomous driving vehicle. The triple characteristic root of path tracking system and longitudinal velocity determine feedback gains. We suggest a resemblance of impulse response curve of the system and lane change trajectory of the vehicle. The root affects the duration of lane change and lateral acceleration. The effect of limited lateral acceleration and saturation of steering angle will be analyzed and discussed. Finally, simulation results will show the trajectory of lane change based on impulse response under limitation of lateral acceleration.

Safety Improvement in the Curvature Motion of a High Speed Segway (고속 세그웨이의 곡선 운동에서의 안정성 향상)

  • Kim, Jihyeon;Bang, Jinuk;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.139-146
    • /
    • 2020
  • In this paper, the slope of the footplate is adjusted to compensate for the centrifugal force with a series elastic actuator (SEA) attached to the Segway's body to improve the cornering characteristics during turning. To ensure Segway's driving safety in the curvature motion, it is necessary to compensate for the centripetal force by tilting the footplate to generate inward force from gravity. When the footplate is tilted under the control of SEA, the vertical load on both wheels has been changed accordingly. The frictional force of the wheel has been changed by the change of the vertical force, which requires adjustment of driving torque to keep the curvature trajectory. That is, the driving torque has been controlled to keep the curvature trajectory considering the frictional force caused by the turning motion. Four SEAs are attached to the footplate to control the slope of the footplate and the real curvature motion has been demonstrated to verify the effects of SEAs in the high- speed curvature motion.

A study on the Development of a Driving Simulator for Reappearance of Vehicle Motion (I) (차량 주행 감각 재현을 위한 운전 시뮬레이터 개발에 관한 연구 (I))

  • Park, Min-Kyu;Lee, Min-Cheol;Son, Kwon;Yoo, Wan-Suk;Han, Myung-Chul;Lee, Jang-Myung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.90-99
    • /
    • 1999
  • A vehicle driving simulator is a virtual reality device which a human being feels as if the one drives a vehicle actually. The driving simulator is used effectively for studying interaction of a driver-vehicle and developing vehicle system of a new concept. The driving simulator consists of a vehicle motion bed system, motion controller, visual and audio system, vehicle dynamic analysis system, cockpit system, and etc. In it is paper, the main procedures to develop the driving simulator are classified by five parts. First, a motion bed system and a motion controller, which can track a reference trajectory, are developed. Secondly, a performance evaluation of the motion bed system for the driving simulator is carried out using LVDTs and accelerometers. Thirdly, a washout algorithm to realize a motion of an actual vehicle in the driving simulator is developed. The algorithm changes the motion space of a vehicle into the workspace of the driving simulator. Fourthly, a visual and audio system for feeling higher realization is developed. Finally, an integration system to communicate and monitor between sub systems is developed.

  • PDF