• Title/Summary/Keyword: Driving stability

Search Result 560, Processing Time 0.028 seconds

Dynamic Performance Analyzing of In-wheel Vehicle considering the Real Driving Conditions and Development of Derivation System for Applying Dynamometer Using Drive Motor's Dynamic Load Torque (실차 주행 조건을 고려한 인휠 차량 거동 해석 및 동력 시험계 부하 토크 인가를 위한 구동 모터의 동적 부하 도출시스템 개발)

  • Son, Seungwan;Kim, Kiyoung;Cha, Suk Won;Lim, Won Sik;Kim, Jungyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.294-301
    • /
    • 2016
  • This paper discusses about analyzing in-wheel vehicle's dynamic motion and load torque. Since in-wheel vehicle controls each left and right driving wheels, it is dangerous if vehicle's wheels are not in a cooperative control. First, this study builds the main wheel control logic using PID control theory and evaluates the stability. Using Carsim-Matlab/Simulink, vehicle dynamic motion is simulated in virtual 3D driving road. Through this, in-wheel vehicle's driving performance can be analyzed. The target vehicle is a rear-wheel drive in D-class sedan. Second, by using the first In-wheel vehicle's performance results, it derivate the drive motor's dynamic load torque for applying the dynamometer. Extracted load torque impute to dynamometer's load motor, linear experiment in dynamometer can replicated the 3-D road driving status. Also it, will be able to evaluate the more accurate performance analysis and stability, as a previous step of actual vehicle experiment.

Estimating Utility Function of In-Vehicle Traffic Safety Information Incorporating Driver's Short-Term Memory (운전자 단기기억 특성을 고려한 차내 교통안전정보의 효용함수 추정)

  • Kim, Won-Cheol;Fujiwara, Akimasa;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.4
    • /
    • pp.127-135
    • /
    • 2009
  • Most traffic information that drivers receive while driving are stored in their short-term memory and disappear within a few seconds. Contemporary modeling approaches using a dummy variable can't fully explain this phenomenon. As such, this study proposes to use utility functions of real-time in-vehicle traffic safety information (IVTSI), analyzing its safety impacts based on empirical data from an on-site driving experiment at signalized intersection approach with a limited visibility. For this, a driving stability evaluation model is developed based on driver's driving speed choice, applying an ordered probit model. To estimate the specified utility functions, the model simultaneously accounts for various factors, such as traffic operation, geometry, road environment, and driver's characteristics. The results show three significant facts. First, a normal density function (exponential function) is appropriate to explain the utility of IVTSI proposed under study over time. Second, the IVTSI remains in driver's short-term memory for up to nearly 22 second after provision, decreasing over time. Three, IVTSI provision appears more important than the geometry factor but less than the traffic operation factor.

Study About the Evaluation of Driving Stability Using 3-axis Accelerometer Test (3축 가속도 시험을 통한 도로 노면의 주행 안정성 평가에 대한 연구)

  • Lee, Dong-Hyun;Kim, Ji-Won;Mun, Sung-Ho;Jeong, Won-Seok
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.141-149
    • /
    • 2012
  • This paper attempts to evaluate driving stability by the vibration of human body. The purpose of this research is to establish an evaluation methodology for controling the quality of road surface. The study was conducted to investigate the relationship between road surface profiles (IRI, International Roughness Index) and the fatigue caused by the vibration of human body. Furthermore, 3-axis acceleration in driving vehicles was examined based on sampling sections under various road conditions. The acceleration value of frequency bands were analyzed by the characteristics of road surface, and realized the range of human influence by conditions and type of road surface with ISO-2631 standards. In general, more human fatigue by vehicle vibration was appeared in concrete pavements with high IRIs based on the analysis from given test data. Whereas, The SMA asphalt pavement and the diamond grinded concrete pavement reduce the human fatigue.

A Study on The Development of IPM for PDP Drive (PDP 구동용 IPM 개발에 관한 연구)

  • Kim, Jin-Il;Jeong, Jin-Beom;Kim, Hee-Jun;Kim, Sun-Hwan;Oh, Pil-Kyoung
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.187-190
    • /
    • 2002
  • Plasma Display Panel(PDP) has been recognized as one of the most competitive display panel. Hence, the importance of PDP driving circuit is getting higher and higher. At the same time, it is strongly required for the driving circuit to be high efficiency, high stability, and cost effective one. In this work, a stable PDP driving circuit is developed by improving the circuit configuration. And the reliability and the productivity of the driving circuit are improved by using the Intelligent Power Module(IPM) technology. Finally operating characteristics of the developed IPM driving circuit are verified by using signal source board developed.

  • PDF

Study on Flow Lubrication Selection of Driving Gear Unit for EMU (전동차용 DRIVING GEAR UNIT의 윤활유량 선정에 관한 연구)

  • Kim, Kyung-Han;Lee, Tae-Hun;Kim, Hak-Soo;Seo, Young-Jin;Ko, Hyung-Keun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.132-137
    • /
    • 2011
  • Many studies are being conducted to improve high speed, light weight and safety of passenger. To improve safety of rolling stock, safety of running performance is most important, and optimizing flow lubrication in driving gear is essential. This study simulates lubricant flow change in driving gear casing which is splashed by the surface of low speed gear teeth following rotational direction of driving gear unit for EMU by using CFD analysis, and based on analysis detail, non-load actual test is conducted for similar driving condition to find out suitability of analysis, selection of lubricate and stability of driving gear.

  • PDF

Design of a Robust Controller for a Watertight Damper Driving System (수밀댐퍼 구동장치의 강인제어에 관한 연구)

  • Han, Seung Hun;Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.45-51
    • /
    • 2017
  • Semi-submersible drilling rigs are offshore plants that perform functions such as ocean exploration for oil and gas acquisition, drilling and production, and storage and unloading of crude oil and gas. Semi-submersible drilling rigs use watertight dampers as emergency buoyancy holders. Since the watertight damper is an emergency shutoff device, it is mainly driven by a pneumatic driving system that can operate without a power supply. The pneumatic driving system has highly non-linear characteristics due to compressibility of air and external disturbance such as static and Coulomb friction. In this paper, a new control algorithm is proposed for a watertight damper driving system based on the sliding mode control with a disturbance observer. To evaluate control performance and robust stability of the designed controller, the control results were compared with the results obtained using the state feedback controller. As a result, it was confirmed that the pneumatic driving system for driving the watertight damper using the sliding mode controller with a disturbance observer can obtain excellent control performance against the parameter changes and the disturbance input.

Using an ABS Controller and Rear Wheel Controller for Stability Improvement of a Vehicle (ABS 제어 및 후륜조향 제어기를 이용한 차량 안정성 개선에 관한 연구)

  • Song, Jeong-Hoon;Boo, Kwang-Suck;Lee, Jong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1125-1134
    • /
    • 2004
  • This paper presents a mathematical model which is about the dynamics of not only a two wheel steering vehicle but a four wheel steering vehicle. A sliding mode ABS control strategy and PID rear wheel control logic are developed to improve the brake and cornering performances, and enhance the stability during emergency maneuvers. The performances of the controllers are evaluated under the various driving road conditions and driving situations. The numerical study shows that the proposed full car model is sufficient to accurately predict the vehicle response. The proposed ABS controller reduces the stopping distance and increases the vehicle stability. The results also prove that the ABS controller can be employed to a four wheel steering vehicle and improves its performance. The four wheel steering vehicle with PID rear wheel controller shows increase of stability when a vehicle speed is high and sharp cornering maneuver when a vehicle speed is low compared to that of a two wheel steer vehicle.

A Study on the Dynamic Stability of Observation Antenna Considering Rotational Speed by Payload Drive Motor (Payload 구동용 모터의 회전 속도를 고려한 관측안테나의 동적 안정성에 관한 연구)

  • Kim, Chae Sil;Shin, Min Jae;Keum, Chang Min;Kim, Jae Min;Choi, Hun Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.617-622
    • /
    • 2016
  • The article describes the determination of the dynamic stability for an observation antenna, considering the rotational speed by the payload driving motor. A finite element model of the observation antenna was made using the solid and beam elements. The connecting parts between the solid and the beam was adequately coupled. The boundary conditions were made by restriction of the degree of freedoms in the supporting points. With the comparison between the modal analysis results and the rotating speed of the payload driving motor, no resonance for the structure of antenna was identified and first natural frequency was determined under 33 Hz (Seismic Cut-Off Frequency). Therefore, the dynamic stability of the antenna was confirmed by the comparism between the seismic safety criterion and the stress results of the dynamic analysis applied the loading conditions and required response spectrum (RRS).

A Study on Improving Driving Stability System by Yaw Moment Control (요우모멘트를 통한 주행안정성 향상 제어 알고리즘에 관한 연구)

  • Park Jung-hyen;Kim Soon-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.392-397
    • /
    • 2006
  • This paper proposed yaw moment control scheme using braking and active rear wheel steering for improving driving stability especially in high speed driving. Its characteristics the unified chassis control system of two equipment that 4WS(4 Wheel Steering) and ESP(Electronic Stability Program). in this study the performance of the vehicle was compared each equipment. And conventional ABS and TCS can only possible to control the longitudinal movement of braking equipment and drive which can only available to control of longitudinal direction. There after new braking system ESP was developed, which controls both of longitudinal and lateral, with adding of the function of controlling Active Yaw Moment. On this paper, we show about not only designing of improved braking and steering system through establishing of the integrated control system design of 4WS and ESP but also designing of the system contribute to precautious for advanced vehicle stability problem.

Driving Performance Analysis of a Rear In-wheel Motor Vehicle with Simultaneous Control of Driving Torque and Semi-active Suspension System (후륜 인휠 모터 전기자동차의 구동 및 반능동 현가시스템 동시 제어를 통한 주행 성능 분석)

  • Shin, Sulgi;Choi, Gyoojae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.11-17
    • /
    • 2015
  • Recently, the in-wheel motor vehicle is rapidly developed to solve energy exhaustion and environmental problems. Especially, it has the advantage of independently driving the torque control of each wheel in the vehicle. However, due to the weight increase of wheel, the comfort of vehicle riding and performance of road holding become worse. In this paper, to compensate the poor performance, a simultaneous control of the driving torque and semi-active suspension system is investigated. A vehicle model is generated using CarSim Software and validated by field tests. Co-simulation of CarSim and MATLAB/Simulink with control logics is carried out, and it is found that simultaneous control of the driving torque and semi-active suspension system can improve driving stability and durability of the in-wheel motor system.