• 제목/요약/키워드: Driving stability

검색결과 560건 처리시간 0.029초

비정질 실리콘(a-Si:H) 박막 트랜지스터 능동 구동형 유기 발광 소자의 문턱 전압 열화(degradation)효과를 줄이기 위한 극성 반전 구동 방법 (Polarity Inversion Driving Method to Reduce the Threshold Voltage Shift in a-Si:H TFT AMOLED)

  • 이우철;박현상;한민구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.248-249
    • /
    • 2007
  • 본 연구에서는 능동 구동형 유기 발광 소자(AMOLED)에 쓰이는 수소화된 비정질 실리콘(a-Si:H)의 전류 안정성(stability)을 개선하기 위한 새로운 구동방법(driving method)을 제안한다. 제안된 방식은 한 프레임 시간 중 특정 시간동안 비정질 실리콘 박막 트랜지스터(Thin Film Transistor, TFT)에 음의 화상데이터전압을 인가함으로써 열화(degradation)를 억제한다. 비정질 실리콘 박막트랜지스터의 열화를 회복하기 위한 음의 화상데이터의 진폭은 실제 이미지를 표현하는 이전에 인가한 양의 화상데이터에 의해 결정된다. 본 연구에서 제안된 구동방식을 시뮬레이션을 통하여 화소 회로의 동작을 검증하였고, 이를 통해 비정질 실리콘 박막 트랜지스터의 열화가 억제되는 것과 화면의 균일성(screen uniformity) 개선하고자 한다.

  • PDF

Fuzzy Logic Speed Control Stability Improvement of Lightweight Electric Vehicle Drive

  • Nasri, Abdelfatah;Hazzab, Abdeldjabar;Bousserhane, Ismail.K;Hadjeri, Samir;Sicard, Pierre
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권1호
    • /
    • pp.129-139
    • /
    • 2010
  • To be satisfied with complex load condition of electric vehicle, fuzzy logic control (FLC) is applied to improve speed response and system robust performance of induction traction machine based on indirect rotor field orientation control. The proposed propulsion system consists of two induction motors (IM) that ensure the drive of the two back driving wheels of lightweight electric vehicle by means the vehicle used for passenger transportation. The electronic differential system ensures the robust control of the vehicle behavior on the road. It also allows controlling, independently, every driving wheel to turn at different speeds in any curve. Our electric vehicle fuzzy inference system control's simulated in Matlab SIMULINK environment, the results obtained present the efficiency and the robustness of the proposed control with good performances compared with the traditional PI speed control, the FLC induction traction machine presents not only good steady characteristic, but with no overshoot too.

안정적인 정전류 구동 방식의 파이로 스퀴브 회로 설계 (Pyro Squib Circuit Design with Stable Constant Current Driving Method)

  • 소경재
    • 한국군사과학기술학회지
    • /
    • 제25권5호
    • /
    • pp.545-551
    • /
    • 2022
  • We proposed a design method for constant current pyro squib circuit. The current method using N MOSFET for the stability problem has a weakness of the current change, requiring a new design. This paper identified the problem with conventional squib circuit where the current is reduced by 25 % when maximum resistance is 3 ohms. Thus, we proposed a stable constant current driving circuit using P MOSFET and PNP BJT. We confirmed stable constant circuit operation through simulations and measurements of the proposed circuit design where the current did not change until the resistance reached 3 ohms.

UGV의 운용적합성 평가를 위한 운용 시험 시나리오 연구 (Study on the Operational Test Scenarios for Assessment of Unmanned Ground Vehicle's Operation Suitability)

  • 강규민;이경수
    • 자동차안전학회지
    • /
    • 제15권4호
    • /
    • pp.6-15
    • /
    • 2023
  • This paper develops scenarios to evaluate the safety performance of Unmanned Ground Vehicle on military circumstances. The scenarios were created using Pegasus Project 6-layer format. These scenarios consist of straight road, curved road, merging road and crossroad. We adapt these scenarios to unpaved road. The characteristics of unpaved roads were divided into roughness, friction coefficient and road frequency. This adaption is validated via computer simulation. We observe the scan lines of vehicle become tangled of the straight road that make the cognitive abilities of the vehicle low and the lane-keeping is unable when vehicles entering curved off-roads over 40 km/h. The developed scenarios will contribute to enhancing stability from the perspective of introducing autonomous driving technology to Korean military.

소형탈선시뮬레이터 상에서의 1/5 축소대차의 안정성 해석 (A Running Stability Test of 1/5 Scaled Bogie using Small Scale Derailment Simulator)

  • 엄범규;이세용;이영엽;강부병;이희성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1905-1913
    • /
    • 2011
  • The dynamic characteristic of bogie that is driving system of railway vehicle is very important regarding decision of vehicle characteristics as running safety and comport. The dynamic characteristic test of bogie is tested on full size in place on field testing on track. But, the testing on the full size caused many problems. To overcome these problem by full size test, the Railway Safety Research Center in Seoul National University of Science & Technology developed 1/5 scale size of small scale derailment simulator and is currently testing running stability of 1/5 scaled bogie. Also To take effectively advantage of running stability test using small scale derailment simulator in actuality design and reliability estimation, it is necessary comparison and examination with field test and theoretical analysis result In this paper. to achieve running stability analysis of 1/5 scaled bogie on small scale derailment. the program using MATLAB that is fast compose and analysis the motion equation of Saemaul power bogie is developed. It is achieved analysis according to various specification (weight, size, suspension, etc..) and is evaluated corelation between test result and dynamic characteristic of actual railway vehicle.

  • PDF

비선형 관측기를 이용한 사륜조향 차량의 횡방향 안정성 강화를 위한 강인 제어기 설계 (Design of a Robust Controller to Enhance Lateral Stability of a Four Wheel Steer Vehicle with a Nonlinear Observer)

  • 송정훈
    • 한국자동차공학회논문집
    • /
    • 제15권6호
    • /
    • pp.120-127
    • /
    • 2007
  • This paper describes the development of a nonlinear observer for four wheel steer (4WS) vehicle. An observer is designed to estimate the vehicle variables difficult to measure directly. A brake yaw motion controller (BYMC), which uses a PID control method, is also proposed for controlling the brake pressure of the rear and inner wheels to enhance lateral stability. It induces the yaw rate to track the reference yaw rate, and it reduces a slip angle on a slippery road. The braking and steering performances of the anti-lock brake system (ABS) and BYMC are evaluated for various driving conditions, including straight, J-turn, and sinusoidal maneuvers. The simulation results show that developed ABS reduces the stopping distance and increases the longitudinal stability. The observer estimates velocity, slip angle, and yaw rate of 4WS vehicle very well. The results also reveal that the BYMC improves vehicle lateral stability and controllability when various steering inputs are applied.

차량 안정성을 고려한 인휠모터 방식 연료전지 전기자동차용 회생제동 알고리즘 개발 (Development of Regenerative Braking Control Algorithm for In-wheel Motor Type Fuel Cell Electric Vehicles Considering Vehicle Stability)

  • 양동호;박진현;황성호
    • 유공압시스템학회논문집
    • /
    • 제7권2호
    • /
    • pp.7-12
    • /
    • 2010
  • In these days, the researches about hybrid and fuel cell electric vehicles are actively performed due to the environmental contamination and resource exhaust. Specially, the technology of regenerative braking, converting heat energy to electric energy, is one of the most effective technologies to improve fuel economy. This paper developed a regenerative braking control algorithm that is considered vehicle stability. The vehicle has a inline motor at front drive shaft and has a EHB(Electo-hydraulic Brake) system. The control logic and regenerative braking control algorithm are analyzed by MATLAB/Simulink. The vehicle model is carried out by CarSim and the driving simulation is performed by using co-simulation of CarSim and MATLAB/Simulink. From the simulation results, a regenerative braking control algorithm is verified to improve the vehicle stability as well as fuel economy.

  • PDF

가솔린기관의 공회전에서 운전조건에 따른 연소안정성에 관한 실험적 연구 (An experimental study for combustion stability by operating conditions in a gasoline engine at idle)

  • 한성빈;김성모
    • 에너지공학
    • /
    • 제18권2호
    • /
    • pp.136-140
    • /
    • 2009
  • 자동차 공회전은 운전자의 운전 만족도에 여러 영향을 미친다. 또한 보다 높은 연료 경제성의 요구가 고조됨에 따라, 자동차 생산자들은 계속적으로 보다 나은 운전조건의 혜택에 관심을 갖는다. 스파크 점화기관의 공회전에서 기관의 안정성은 연소변동에 의해 좌우되며, 기관의 안정성은 연료분사시기, 점화시기, 그리고 공기연료비 등의 요소들에 영향을 받게 된다. 본 연구에서는 공회전에서 연료분사시기, 점화시기 그리고 공기연료비 등에 따라, 연소의 안정성과 변동율에 미치는 영향을 조사하였다.

Geomechanical study of well stability in high-pressure, high-temperature conditions

  • Moradi, Seyyed Shahab Tabatabaee;Nikolaev, Nikolay I.;Chudinova, Inna V.;Martel, Aleksander S.
    • Geomechanics and Engineering
    • /
    • 제16권3호
    • /
    • pp.331-339
    • /
    • 2018
  • Worldwide growth in hydrocarbon and energy demand is driving the oil and gas companies to drill more wells in complex situations such as areas with high-pressure, high-temperature conditions. As a result, in recent years the number of wells in these conditions have been increased significantly. Wellbore instability is one of the main issues during the drilling operation especially for directional and horizontal wells. Many researchers have studied the wellbore stability in complex situations and developed mathematical models to mitigate the instability problems before drilling operation. In this work, a fully coupled thermoporoelastic model is developed to study the well stability in high-pressure, high-temperature conditions. The results show that the performance of the model is highly dependent on the truly evaluated rock mechanical properties. It is noted that the rock mechanical properties should be evaluated at elevated pressures and temperatures. However, in many works, this is skipped and the mechanical properties, which are evaluated at room conditions, are entered into the model. Therefore, an accurate stability analysis of high-pressure, high-temperature wells is achieved by measuring the rock mechanical properties at elevated pressures and temperatures, as the difference between the model outputs is significant.

CNC 복합자동선반 베이스 구조 안전성에 관한 연구 (A Study of Structural Stability of Complex CNC Automatic Lathe Base)

  • 이상협;양동호;차승환;곽진;이종찬;이영식
    • 한국기계가공학회지
    • /
    • 제20권8호
    • /
    • pp.80-85
    • /
    • 2021
  • This study is to evaluate the structural stability of heavy duty structure of the Complex CNC automatic lathe. The analysis conditions were analyzed by applying the weight and load of the part itself and then applying the weight of the upper assembly unit. As a result of the structural analysis, the values of stress and strain are small and safety factor is high, and as a result of the dynamic analysis, there will be no resonance outside the equipment driving area, so there will be no problem in equipment stability.