• Title/Summary/Keyword: Driving resistance

Search Result 319, Processing Time 0.023 seconds

Analysis for Driving Shock Resistance of Military Vehicle (군용 차량 주행 내충격 분석)

  • Jeon, Jong-Ik;Lee, Jong-Hak;Jeong, Eui-Bong;Kang, Kwang-Hee;Choi, Ji-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.267-272
    • /
    • 2014
  • In this paper, we analyze the characteristics for the driving shock resistance of the military vehicle through the bump test. Prior to the experiment, theoretical analysis was performed by using the SRS(shock response spectrum) and VRS(vibration response spectrum) analysis method. And we estimated the characteristics for the driving shock resistance of the military vehicle. Bump test was performed using the acceleration sensor and the driving test at a different speed. We evaluated the characteristics for the driving shock resistance of the military vehicle based on the result. And predicted values were compared with the theoretical analysis. In addition, we evaluated the results of the theoretical prediction of the SRS and the VRS analysis. And we evaluate the suitability of the prediction method at military vehicle shock analysis.

  • PDF

The Nail Jointing Properties and Checking Mechanism of Thinned Japanese Cedar (Cryptomeria japonica D. Don.) Boards Grown in Southern District (남부지역 삼나무 간벌목재의 못접합특성과 할렬발생)

  • So, Won-Tek
    • Journal of the Korea Furniture Society
    • /
    • v.22 no.1
    • /
    • pp.18-25
    • /
    • 2011
  • This experiment was carried out to investigate the effects of nail diameter, driving distance from end on the nail check length, and the effects of nail diameter, prehole for nail driving, and nail driving slope on the nail withdrawal resistance, by the static test of universal testing machine. The test specimen were Japanese cedar (Cryptomeria japonica D. Don.) boards grown in southern district of Korea, and the nails for test were 2.02~4.82 mm in diameter. After nail driving, the back face checks of test boards were longer than the surface checks. The optimum nail diameter without checks or loss of nail withdrawal resistance were below 10% of board width and the optimum driving distance from end of boards were ten multiple of nail diameter. The relation between nail diameter (x) and withdrawal resistance (y) was linear and the regression formulae for Japanese cedar board was y = 8.66x + 7.6 ($R^2=0.978$). As both of the prehole diameter and driving slope were increased, the withdrawal resistances were significantly decreased.

  • PDF

RESISTANCE ESTIMATION OF A PWM-DRIVEN SOLENOID

  • Jung, H.G.;Hwang, J.Y.;Yoon, P.J.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.249-258
    • /
    • 2007
  • This paper proposes a method that can be used for the resistance estimation of a PWM (Pulse Width Modulation)-driven solenoid. By using estimated solenoid resistance, the PWM duty ratio was compensated to be proportional to the solenoid current. The proposed method was developed for use with EHB (Electro-Hydraulic Braking) systems, which are essential features of the regenerative braking system of many electric vehicles. Because the HU (Hydraulic Unit) of most EHB systems performs not only ABS/TCS/ESP (Electronic Stability Program) functions but also service braking function, the possible duration of continuous solenoid driving is so long that the generated heat can drastically change the level of solenoid resistance. The current model of the PWM-driven solenoid is further developed in this paper; from this a new resistance equation is derived. This resistance equation is solved by using an iterative method known as the FPT (fixed point theorem). Furthermore, by taking the average of the resistance estimates, it was possible to successfully eliminate the effect of measurement noise factors. Simulation results showed that the proposed method contained a sufficient pass-band in the frequency response. Experimental results also showed that adaptive solenoid driving which incorporates resistance estimations is able to maintain a linear relationship between the PWM duty ratio and the solenoid current in spite of a wide variety of ambient temperatures and continuous driving.

A Electrical Characteristics of Disk-type Piezotransformer with Electrode Ratio of Driving and Generating Part (디스크형 압전변압기의 전극비에 따른 전기적 특성)

  • 이종필;채홍인;정수현;홍진웅
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.10
    • /
    • pp.458-463
    • /
    • 2003
  • In order to develope piezoelectric transformer for the ballast of fluorescent lamp, a new shape and electrode pattern of piezoelectric transformer has been investigated in this work. The composition of piezoelectric ceramics was 0.95Pb(Zr$_{0.51}$Ti$_{0.49}$)O$_3$+0.03Pb(Mn$_{1}$3/Nb$_{2}$3/)O$_3$+0.02Pb(Sb$_{1}$2/Nb$_{1}$2/)O$_3$. The sample prepared by this composition system showed the characteristics which has about 1200 of relative dielecric constant, 1100 of the mechanical quality factor, 0.53 of the electromechanical coupling coefficient, 320 pC/N of the piezoelectric constant d$_{33}$, 0.3 % of the dissipation factor. Diameter and thickness of disk-type piezoelectric transformer was 45 mm and 4 mm, respectively. The driving and generating electrode with their gap of 1mm were fabricated on the top surface. But the common electrode was fabricated on the whole bottom surface. The electrode surface ratio of driving and generating part on the top surface ranges from 1.4:1 to 3:1. We investigated the electrical characteristics with the variation of the electrode surface ratio of driving and generating part in the range of load resistance of 100 $\Omega$~70 k$\Omega$. The set-up voltage ratio of this piezoelectric transformer increases with increasing both the electrode surface of driving part and the load resistance. The set-up voltage ratio at no load resistance was more than 60 times. On the other hand, the efficiency decreases with increasing the electrode surface of driving part. In the case of the electrode surface of both 1.4:1 and 2:1, maximum efficiency showed above 97 % at load resistance of 2 k$\Omega$. However, in the case of the electrode surface of 3:1, maximum efficiency showed about 94 % at load resistance of 3 k$\Omega$.>.>.>.

Prediction of Pile-Driving Resistance by the Wave Equation and Residual Stress (파동방정식 및 잔류응력에 의한 항타지대력 추정)

  • 황정규
    • Geotechnical Engineering
    • /
    • v.2 no.3
    • /
    • pp.15-26
    • /
    • 1986
  • A great number of different pile-driving formulas are widely used to determine the load-carr-ying capacity during driving. However, engineers have been unable to agree on any particular pile.driving formula because the mechanisms of pile driving action which involves many complications such as hammer-pile-soil interaction could not be solved completely in any practical manner. This paper is presented for the purpose of giving field engineers a reliable analytical procedures for the prediction of pile.driving resistance without resort to electronic computers based on the theory of longitudinal wave transmission in conjunction with the wave equation and on the consideration of the effect of residual stresses induced by reversed friction in pile.

  • PDF

Development of a Numerical Algorithm for the Evaluation of Aerodynamic Driving Stability of a Vehicle (주행차량의 공기역학적 주행안전성 평가를 위한 알고리즘 개발연구)

  • Kim, Chul-Ho;Kim, Chang-Sun;Lee, Seung-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.265-272
    • /
    • 2016
  • The objective of vehicle aerodynamic design is on the fuel economy, reduction of the harmful emission, minimizing the vibration and noise and the driving stability of the vehicle. Especially for a sedan, the driving stability of the vehicle is the main concern of the aerodynamic design of the vehicle indeed. In this theoretical study, an evaluation algorithm of aerodynamic driving stability of a vehicle was made to estimate the dynamic stability of a vehicle at the given driving condition on a road. For the stability evaluation of a driving vehicle, CFD simulation was conducted to have the rolling, pitching and yawing moments of a model vehicle and compared the values of the moments to the resistance moments. From the case study, it is found that a model sedan running at 100 km/h in speed on a straight level road is stable under the side wind with 45 m/s in speed. But the different results may be obtained on the buses and trucks because those vehicles have the wide side area. From the case study of the model vehicle moving on 100 km/h speed with 15 m/s side wind is evaluated using the numerical algorithm drawn from the study, the value of yawing moment is $608.6N{\cdot}m$, rolling moment $-641N{\cdot}m$ and pitching moment $3.9N{\cdot}m$. These values are smaller than each value of rotational resistance moment the model vehicle has, and therefore, the model vehicle's driving stability is guaranteed when driving 100 km/h with 15 m/s side wind.

Predictions of PC Pile Shaft Resistance by CPT Data (콘관입시험자료를 기초로 한 PC말뚝의 주면마찰력 예측)

  • 윤길림;이영남
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.71-80
    • /
    • 1998
  • Three prestressed concrete(PC) piles were installed for research purpose at Seosan area of west sea of Korea, and also cone penetration tests (CPT) were performed near two pile locations in order to compute PC pile shaft resistance by using CPT data measured. Three common CPT prediction methods that ia, Schmertmann method, Tumay Sl Fakroo method and LCPC method in France were used to predict pile shaft resistance. The pile shaft resistance predicted by each method was compared with that obtained by full-scale loading test and pile driving analyzer to estimate reliability of each prediction method. The predicted resistances based on three CPT-based methods underestimated significantly the resistances obtained from by fullrcale loading test, performed at 25 days and 42 days text pile installtion. There were, however, good agreements of predicted shaft resistance of piles between three CPT-based methods and pile driving analyzer tested two weeks after pile installtion.

  • PDF

The Maximum Efficiency Driving in IPMSM by Precise Estimation of Current Phase Angle

  • Cho, Gyu-Won;Kim, Cheol-Min;Kim, Gyu-Tak
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1221-1226
    • /
    • 2013
  • In this paper, the equivalent circuit for the efficiency calculation by precise estimation of the linkage flux, inductance and iron loss resistance was calculated accurately. In addition, the driving characteristics according to the current phase angle are analyzed and the maximum efficiency point is calculated. And then, analyzed and experimental values of the efficiency were compared. So, causes of error were expected to be vibration and noise by harmonic distortion of the voltage and current, and mechanical loss of dynamometer. In addition, the driving characteristics according to the current phase angle are analyzed and the maximum efficiency point is calculated.

Driving Characteristics Analysis with Temperatures of Lithium Polymer Battery Pack for Bimodal Tram (바이모달트램에 탑재된 리튬폴리머배터리팩의 온도에 따른 운전특성분석)

  • Lee, Kang-Won;Jang, Se-Ky
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.292-292
    • /
    • 2010
  • Bimodal Tram is driven by both engine and Lithium Polymer battery pack which consists with 168 cells of LPB(80Ah, 650Vdc). LPB pack is very frequently charged and discharged in driving. Temperature inside of LPB pack makes an great effect on both charging and discharging capacity which seem to be related with LPB internal resistance. LPB internal resistance is increasing or little decreasing with the decreased temperature under 10 - $20^{\circ}C$ and the increased temperature over $30^{\circ}C$ which is similar to the temperature characteristics of single LPB cell. This paper has analyzed the driving characteristics of LPB pack for bimodal tram is running with either battery mode or hybrid mode.

  • PDF

A Driving System Design of an Electric Motor Scooter (전동 스쿠터 동력장치 설계)

  • Kim, Moon-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.1-6
    • /
    • 2011
  • This paper proposes a new design method for electric scooter which can maximize the power efficiency at the given driving condition. The proposed method is designed with the electric and mechanical parameters and driving dynamics. These values are extracted from the dynamic and mathematical equations of the scooter. For validation, numerical simulation results are presented in this paper. As a result, the scooter achieved over 80% efficiency at 360 rpm at 1.42kw load. It is clear that the proposed method was verified through a 1.42kw numerical model.