• Title/Summary/Keyword: Driving on the road

Search Result 1,056, Processing Time 0.031 seconds

Estimating On-road NOx Emissions of Euro 6 Light-duty Diesel Vehicles (Euro6 소형 경유자동차의 실제 도로 주행 NOx 배출량 평가)

  • Park, Yeon-Jae;Park, Junhong;Lee, Jai-Young
    • Journal of ILASS-Korea
    • /
    • v.21 no.4
    • /
    • pp.207-213
    • /
    • 2016
  • To protect air pollution of urban area from motor vehicles, emission limits for diesel vehicles have been dramatically lowered in short period. But recent studies have shown that on-road NOx emissions of light-duty diesel vehicles are considerably higher than the values measured with laboratory test procedures used for emission certification. To tackle with this issue, Ministry of Environment have a plan to introduce EU RDE-LDV (Real-driving Emission-Light-duty Vehicle) regulation. In this study, 4 Euro 6 diesel vehicles have been tested with the new test procedures published by EU to estimate on-road NOx emissions using PEMS (Portable Emission Measurement System). The results have shown that the requirements of EU RDE-LDV could be met in driving condition of metropolitan area for constitution of test routes and validity of test results. In analysing with Moving Averaging Window method the completeness and normality of test data were validated with the requirement. On-road NOx emissions were quite deviated as test vehicles and higher than the new limit of on-road NOx emission enforced from Sept. 2017, which means that RDE-LDV can effectively reduce NOx emission of diesel vehicles in real driving conditions of Korea.

A Study on Urban Driving Pattern (실 도로 주행 특성에 대한 연구)

  • 한상명;김창현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.9-14
    • /
    • 2002
  • The durability prediction of emission control components, especially 02 sensor and catalytic converter, is getting more important as emission regulation is getting stricter and vehicle durability mileage requirement is also extended from 80,000 ㎞ to 160,000 km in Korean market. And the duration of vehicle mileage accumulation to get vehicle exhaust emission deterioration factor for certification is required to be shorter in order to reduce the vehicle development time. Since most of the vehicle emission development tests are done on chassis dynamometer and aging bench by using vehicle aging modes, real road condition and in-use driving patterns must be reflected into them to predict the vehicle emission level and to meet emission regulation especially at high mileage. In order to get the frequent driving pattern of vehicle and the aging characteristic of emission components, a vehicle was tested by changing drivers and driving roads around Seoul. Real road driving patterns were analyzed and compared with those of the certification modes which are well known in automotive industry.

Fuel Economy and Emission Characteristics Evaluation by CVS-75 Mode Test and RDE(Real-road Driving Emissions) Test (CVS-75 모드 시험과 실도로 주행 시험을 통한 배출가스 및 연비 성능 평가)

  • Kang, Eunjeong;Um, Junsik;Seo, Youngho
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.67-70
    • /
    • 2014
  • Recently EU has been recognized that there is a difference of emission quantity between emission certification test mode and real-road driving test. Accordingly the European Commission is currently preparing to require real-road testing as part of the passenger car type-approval process in the EU. vehicle manufacturers from 2017 are expected to test new vehicles not only under laboratory conditions but also on the real-road, using PEMS equipment. Therefore the purpose of this study is to analyze the emission and Fuel Economy of CVS-75 mode test using chassis dynamometer and RDE test using PEMS equipment by PHEV passenger car.

Dynamic Stress/Strain Measurement and Analysis of the Aluminum Alloy Road Wheel through F1 Circuit Ultimate Driving Test (F1 서킷 극한주행시험을 통한 알루미늄 알로이 휠의 동응력/변형률 계측 및 분석)

  • Lee, Chang Soo;Park, Cheol Soon;Park, Hyung Bae;Jung, Sung Pil;Chung, Won Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.612-617
    • /
    • 2014
  • It is generally known that the automotive road wheel involves the non-proportional multiaxial loading condition, therefore the measuring dynamic stress and strain in driving state is very important to predict an endurance characteristic of the automotive road wheel. In this study, the ultimate driving test using F1 circuit with respect to 2 kinds of velocity conditions have been carried out in order to measure dynamic stress, strain of the wheel and acceleration of a vehicle. Based on the measured results, the characteristics of dynamic stress generation have been analyzed, and factors which have effect on the dynamic stress generation have been studied.

  • PDF

Designing Real-time Observation System to Evaluate Driving Pattern through Eye Tracker

  • Oberlin, Kwekam Tchomdji Luther.;Jung, Euitay
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.421-431
    • /
    • 2022
  • The purpose of this research is to determine the point of fixation of the driver during the process of driving. Based on the results of this research, the driving instructor can make a judgement on what the trainee stare on the most. Traffic accidents have become a serious concern in modern society. Especially, the traffic accidents among unskilled and elderly drivers are at issue. A driver should put attention on the vehicles around, traffic signs, passersby, passengers, road situation and its dashboard. An eye-tracking-based application was developed to analyze the driver's gaze behavior. It is a prototype for real-time eye tracking for monitoring the point of interest of drivers in driving practice. In this study, the driver's attention was measured by capturing the movement of the eyes in real road driving conditions using these tools. As a result, dwelling duration time, entry time and the average of fixation of the eye gaze are leading parameters that could help us prove the idea of this study.

A Study for Detecting Fuel-cut Driving of Vehicle Using GPS (GPS를 이용한 차량 연료차단 관성주행의 감지에 관한 연구)

  • Ko, Kwang-Ho
    • Journal of Digital Convergence
    • /
    • v.17 no.11
    • /
    • pp.207-213
    • /
    • 2019
  • The fuel-cut coast-down driving mode is activated when the acceleration pedal is released with transmission gear engaged, and it's a default function for electronic-controlled engine of vehicles. The fuel economy becomes better because fuel injection stops during fuel-cut driving mode. A fuel-cut detection method is suggested in the study and it's based on the speed, acceleration and road gradient data from GPS sensor. It detects fuel-cut driving mode by comparing calculated acceleration and realtime acceleration value. The one is estimated with driving resistance in the condition of fuel-cut driving and the other is from GPS sensor. The detection accuracy is about 80% when the method is verified with road driving data. The result is estimated with 9,600 data set of vehicle speed, acceleration, fuel consumption and road gradient from test driving on the road of 12km during 16 minutes, and the road slope is rather high. It's easy to detect fuel-cut without injector signal obtained by connecting wire. The detection error is from the fact that the variation range of speed, acceleration and road gradient data, used for road resistance force, is larger than the value of fuel consumption data.

Estimation of Vehicle Traveling Speed Using Moving Image (동영상을 이용한 주행차량속도 산정)

  • 이종출;장호식;강상민;박규열
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.187-192
    • /
    • 2003
  • of the road would be a key index judged for a safety at the vehicle driving on the road. In Korea, as seen through a lot of documents, the vehicle driving speed is much faster compared with the design speed. The vehicle driving speed is an important element to get to know the vehicle driving characteristics. However, it is not easy to obtain the vehicle driving speed relating to vehicles' consecutive movements just merely through the presently used methods of vehicle driving speed. In consequence, this study has conducted photographing vehicle movements by use of digital moving images. Based on digital moving Images pictured, we have obtained a certain time interval frame and extracted out vehicles' coordinates and calculated vehicle speed from the firstly rectified image and the secondly rectified image. We could obtain comparatively exact results in the calculation of vehicle driving speed as errors of about 4%, as a result of comparison and verification of vehicle speed calculated from the digital moving images and the speed obtained from DGPS.

  • PDF

Driving Performance Evaluation Using Foot Operated Steering System in the Virtual Driving Simulator (가상 운전 시뮬레이터를 이용한 족동 조향 시스템의 운전 성능 평가)

  • Song, Jeongheon;Kim, Yongchul
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.197-204
    • /
    • 2017
  • The aim of this study was to evaluate driving performance of normal subjects for controlling the steering wheel by using foot operated steering devices in the driving simulator. Many people with complete bilateral loss or loss of use of upper limbs but with normal lower limbs are frequently left without use and/ or control of their hands, arms, or the upper extremities of their bodies. As a result, persons disabled in this manner have problems in operation an automobile because they cannot grasp and manipulate a conventional steering wheel. Therefore, if foot operated steering devices are used for controlling the vehicle on in people with disabilities, the disabled people could improve their community mobility by driving a car safely. Ten normal subjects were involved in this research to evaluate steering performance by using three types of steering devices(conventional steering wheel, pedal type foot steering, circular type foot steering) in driving simulator. STISim Drive 3 program was used for testing the driving performance in two road scenarios: straight road and curved road at low and high speed of vehicle (40 km/h and 80 km/h). This study used two-way ANOVA to compare the influences of two factors(type of foot steering device and road scenario) in the three dependent variables of steering performance(standard deviation of lateral position, the lateral position of vehicle and the number of line crossing). The average values of the three dependent variables(standard deviation of lateral position, lateral position and the number of line crossing) of driving performance were significantly smaller for conventional steering wheel or pedal type foot steering than circular type foot steering.

Analysis of the Driving Patterns Concerned with Fuel Economy in Seoul Metropolitan Area (서울특별시의 주행특성 분석에 관한 연구)

  • Lee, Y.J.;Kwon, O.S.;Koh, C.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.1-15
    • /
    • 1995
  • The driving patterns in Seoul metropolitan area were surveyed in an experiment involving 1,212km of driving along seventeen representative routes. The speed and fuel consumption data were recorded and the influence of driving patterns on vehicle fuel economy was analyzed by statistical techniques. The results showed that characteristics of driving in Seoul metropolitan area are far different from that of CVS-75 mode and then on-road fuel economy in Seoul may be small as compared with that of CVS-75 mode. Finally, it was proposed that CVS-75 mode fuel economy should be modified by applying adjustment factor to represent actual on-road fuel economy.

  • PDF

A Review of Intelligent Self-Driving Vehicle Software Research

  • Gwak, Jeonghwan;Jung, Juho;Oh, RyumDuck;Park, Manbok;Rakhimov, Mukhammad Abdu Kayumbek;Ahn, Junho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5299-5320
    • /
    • 2019
  • Interest in self-driving vehicle research has been rapidly increasing, and related research has been continuously conducted. In such a fast-paced self-driving vehicle research area, the development of advanced technology for better convenience safety, and efficiency in road and transportation systems is expected. Here, we investigate research in self-driving vehicles and analyze the main technologies of driverless car software, including: technical aspects of autonomous vehicles, traffic infrastructure and its communications, research techniques with vision recognition, deep leaning algorithms, localization methods, existing problems, and future development directions. First, we introduce intelligent self-driving car and road infrastructure algorithms such as machine learning, image processing methods, and localizations. Second, we examine the intelligent technologies used in self-driving car projects, autonomous vehicles equipped with multiple sensors, and interactions with transport infrastructure. Finally, we highlight the future direction and challenges of self-driving vehicle transportation systems.