• Title/Summary/Keyword: Driving on the road

Search Result 1,056, Processing Time 0.032 seconds

Multi-flexible Body Dynamic Analysis of a Heavy Trailer Vehicle Passing a Bump (대형 트레일러 차량의 범프 통과 시 유연다물체 동역학 해석)

  • Kim, J.Y.;Kim, H.S.;Kim, J.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.40-45
    • /
    • 2009
  • This article deals with the transient analysis using multi-flexible body dynamics of a trailer vehicle, which is passing a bump on the flat road. In order to investigate the transient dynamic behavior of the trailer, we developed an equivalent finite element model for the trailer and a vehicle dynamic model for the truck using multi-body dynamics. The driving condition considered here is set as the trailer vehicle passes a bump on the flat road in 7km/h. And we investigate the time histories of vertical load and deflections on connecting points between the trailer and truck during the vehicle passes a bump. Due to the dynamic load resulted from the driving condition, additional stress concentrations are found in the trailer and the suspension connecting points between the trailer and rear axles along with kingpin.

  • PDF

Estimation Desirable Safety Speed based on Driving Condition on Rural Highways (도로환경특성을 고려한 안전속도 산정에 관한 연구)

  • Kim, Keun-Hyuk;Lim, Joon-Beom;Lee, Soo-Beom;Kang, Dong-Soo;Hong, Ji-Yeon
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.149-162
    • /
    • 2012
  • PURPOSES : The causes of traffic accidents can be classified into the factors of highway users, vehicles, and driving environments. Traffic accidents result from the deficiency in single or combination of these three factors. The objective of this study is to define the "potentially hazardous sections of highway" in terms of traffic safety considering these three factors. METHODS : The test drivers performed repeated driving on these highway sections. The drivers and passengers recorded the sections on which the driving was uncomfortable, and the speeds on the sections excluding the uncomfortable sections were used for the development of the model. RESULTS : The model is composed of three sub-models for each of the horizontal curve, tangent, and the section where the curve starts/ends. The safe driving behavior coefficients by the horizontal curvature were derived by comparing the maximum operating speeds at which the vehicle may slide or deviate and the speeds at which the drivers feel comfort. The safety speeds on tangent were derived by the length of tangent section considering the driver's desired speeds under the traffic condition on which the drivers hardly influenced by the other vehicles. For the sections where the curve starts/ends, the driving behaviors were classified by the distances between the curves, and the safe acceleration/deceleration speeds were derived on which the drivers enter/exit the curve sections safely. CONCLUSIONS : Safety speed could then be regarded that the model suggested in this study may be useful to define the potentially hazardous highway section and contribute the improvement of highway safety.

Changes in air pollutant emissions from road vehicles due to autonomous driving technology: A conceptual modeling approach

  • Hwang, Ha;Song, Chang-Keun
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.366-373
    • /
    • 2020
  • The autonomous vehicles (AVs) could make a positive or negative impact on reducing mobile emissions. This study investigated the changes of mobile emissions that could be caused by large-scale adoption of AVs. The factors of road capacity increase and speed limit increase impacts were simulated using a conceptual modeling approach that combines a hypothetical speed-emission function and a traffic demand model using a virtual transportation network. The simulation results show that road capacity increase impact is significant in decreasing mobile emissions until the market share of AVs is less than 80%. If the road capacity increases by 100%, the mobile emissions will decrease by about 30%. On the other hand, driving speed limit increase impact is significant in increasing mobile emissions, and the environmentally desirable speed limit was found at around 95 km/h. If the speed limit increases to 140 km/h, the mobile emissions will increase by about 25%. This is because some vehicles begin to bypass the congested routes at high speeds as speed limit increases. Based on the simulation results, it is clear that the vehicle platooning technology implemented at reasonable speed limit is one of the AV technologies that are encouraging from the environmental point of view.

Vehicle Classification and Tracking based on Deep Learning (딥러닝 기반의 자동차 분류 및 추적 알고리즘)

  • Hyochang Ahn;Yong-Hwan Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.161-165
    • /
    • 2023
  • One of the difficult works in an autonomous driving system is detecting road lanes or objects in the road boundaries. Detecting and tracking a vehicle is able to play an important role on providing important information in the framework of advanced driver assistance systems such as identifying road traffic conditions and crime situations. This paper proposes a vehicle detection scheme based on deep learning to classify and tracking vehicles in a complex and diverse environment. We use the modified YOLO as the object detector and polynomial regression as object tracker in the driving video. With the experimental results, using YOLO model as deep learning model, it is possible to quickly and accurately perform robust vehicle tracking in various environments, compared to the traditional method.

  • PDF

Obstacle Detection and Recognition System for Autonomous Driving Vehicle (자율주행차를 위한 장애물 탐지 및 인식 시스템)

  • Han, Ju-Chan;Koo, Bon-Cheol;Cheoi, Kyung-Joo
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.6
    • /
    • pp.229-235
    • /
    • 2017
  • In recent years, research has been actively carried out to recognize and recognize objects based on a large amount of data. In this paper, we propose a system that extracts objects that are thought to be obstacles in road driving images and recognizes them by car, man, and motorcycle. The objects were extracted using Optical Flow in consideration of the direction and size of the moving objects. The extracted objects were recognized using Alexnet, one of CNN (Convolutional Neural Network) recognition models. For the experiment, various images on the road were collected and experimented with black box. The result of the experiment showed that the object extraction accuracy was 92% and the object recognition accuracy was 96%.

Unmanned Driving of Robotic Vehicle Using Magnetic Maker (자계표식을 이용한 로봇형 차량의 무인주행)

  • Im, Dae-Yeong;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.775-780
    • /
    • 2008
  • In this paper, unmanned driving of robotic vehicle using magnetic marker is proposed. One of the most important component of autonomous vehicle is to detect the position of a magnetic marker on the road. In order to calculate the precise position of a magnet embedded on the road, the relation of magnetic field and a sensor is analyzed, and a new position sensing system using arrayed magnetic sensor is proposed. Also, the steering control system using a stepping motor is developed for driving by automatic mode as well as manual mode. For the verification of usability, the developed robotic vehicle is tested on magnetic road.

Analysis on Accuracy of GPS installed in Digital Tachograph of Commercial vehicles (사업용 차량의 프로브 활용 가능성 평가를 위한 디지털운행기록계 위치정보 정확도 분석)

  • Sim, HyeonJeong;Chae, Chandle;Kang, Minju;Lee, Jonghoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.164-175
    • /
    • 2019
  • Installation of digital tachograph, black box, and ADAS have been enforced to commercial vehicles for preventing violent driving and accidents by the Traffic Safety Act in Korea. Nevertheless, the damage caused by road hazards has increased 1.5 times in 2016 compared to 2013. So, developing new technologies that can identify road hazard using the sensors installed in commercial vehicles are conducting by the Ministry of Land, Infrastructure and Transport. As a part of the technologies, this research analyze the error range of GPS installed in commercial vehicles that vary according to the driving speed. As a result, the average error was 9.72m at the driving speed of 100km/h, and the error was 2.1 times larger than the average error of 4.69m at the driving speed of 40km/h. The event point proper integration/separation range(m) was analyzed to be 20m with a recognition rate of 90% or more at the same point regardless of driving speed. The results of this research can be used as basic data for improving the accuracy of location-based data would be collected using commercial vehicles.

Speed and Steering Control of Autonomous Vehicle Using Neural Network (신경회로망을 이용한 자율주행차량의 속도 및 조향제어)

  • 임영철;류영재;김의선;김태곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.274-281
    • /
    • 1998
  • This paper describes a visual control of autonomous vehicle using neural network. Visual control for road-following of autonomous vehicle is based on road image from camera. Road points on image are inputs of controller and vehicle speed and steering angle are outputs of controller using neural network. Simulation study confirmed the visual control of road-following using neural network. For experimental test, autonomous electric vehicle is designed and driving test is realized

  • PDF

Application of Simulation for Road Design Evaluation (도로설계 평가를 위한 3차원 시뮬레이션 적용)

  • Kim, Ga-Ya;Jung, Beam-Seok;Kim, Nam-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.2
    • /
    • pp.121-131
    • /
    • 2008
  • Two dimensional road design is connoting danger factor because different point between design standard and driver's reaction. Consequently two dimensional road design is difficult to recognize problem that happen beforehand when before construction. Therefore three dimensional road design that can grasp problem after completion is required. In this study, three dimensional road was designed to evaluate road that is designed. Road designed by Inroad that is road design program. DTM is created using digital map and elevation data. Three dimensional road was designed by integrated DTM of road and topography. Road design evaluation was performed in three dimension. Driving simulation and sight distance assessment were carried out to estimate stability of alignment. Shadow simulation was executed on icy road section for bad section of icy road surface. As a result of evaluation, this study could confirm shape of road after completion. And sight distance could be calculated and visually confirmed. Also, icy road sections were extracted through shadow simulation.

  • PDF

Development of Korean RDE Routes for On-road Emissions Measurement of Light Duty Vehicles (소형자동차 실제도로 주행 배출가스 측정을 위한 국내 주행경로 개발)

  • Kang, Gunwoo;Lee, Jongtae;Park, Junhong;Cha, Junepyo;Chon, Mun Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.287-296
    • /
    • 2017
  • Although emission regulations have been gradually strengthened in the past decade, the road transport section remains the most important source of NOx emission in air pollution. One reason is that there has been an increase in the proportion of diesel vehicles and in the volume of traffic. In addition, the certification procedure for standard emission limit does not sufficiently reflect real traffic condition and various driving patterns. Therefore, the European Commission(EC) has recently come up with the RDE-LDV(Real driving emissions-light duty vehicle) regulations, and the Ministry of Environment in Korea has been conducting research on evaluating RDE-LDV with PEMS(Portable Emission Measurement Systems). According to the trip requirements of the 2nd RDE package announced by the EC, the objectives of the present study include the development of Korean RDE routes to reflect domestic traffic and road conditions. Based on the results, both RDE routes are in correct compliance with RDE-LDV regulations, including trip requirements and trip dynamics. KOR-NIER Route 1, in particular, has a higher driving load in rural driving with regard to excessive gradient of elevation compared to KOR-NIER Route 2, including relatively plane rural driving.