• Title/Summary/Keyword: Driving assistance system

Search Result 124, Processing Time 0.025 seconds

Driving Condition based Dynamic Frame Skip Method for Processing Real-time Image Recognition Methods in Smart Driver Assistance Systems (스마트 운전자 보조 시스템에서 영상인식기법의 실시간 처리를 위한 운전 상태 기반의 동적 프레임 제외 기법)

  • Son, Sanghyun;Jeon, Yongsu;Baek, Yunju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.54-62
    • /
    • 2018
  • According to evolution of technologies, many devices related to various applications were researched. The advanced driver assistance system is a famous technique effected from the evolution. The technique of driver assistance uses image recognition methods to collect exactly information around the vehicle. The computing power of driver assistance device has become more improved than in the past. However, it's difficult that processed various recognition methods at real-time. We propose new frame skip method to process various recognition methods at real-time in the limited hardware. In the previous researches, frame skip rate was set up static values, thus the number of processed frames through recognition methods was smaller. We set up the frame skip rate dynamically using a driving condition of vehicle through speed and acceleration value, in addition, the number of processed frames was maximized. The performance is improved more 32.5% than static frame skip method.

CONSIDERATIONS CONCERNING IMPROVEMENT OF EMERGENCY EVASION PERFORMANCE

  • Nozaki, H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.187-193
    • /
    • 2006
  • When emergency evasion during running is required, a driver sometimes causes a vehicle to drift, that is, a condition in which the rear wheels skid due to rapid steering. Under such conditions, the vehicle enters a very unstable state and often becomes uncontrollable. An unstable state of the vehicle induced by rapid steering was simulated and the effect of differential steering assistance was examined. Results indicate that, in emergency evasion while cornering and during which the vehicle begins to drift, unstable behavior like spins can be avoided by differential steering assistance and both the stability and control of the vehicle is improved remarkably. In addition, reduction of overshoot during spin evasion by the differential steering assistance has been shown to enable the vehicle to return to a state of stability in a short time in emergency evasion during straight-line running. Moreover, the effectiveness of differential steering assistance during emergency evasion was confirmed using a driving simulator.

STOP AND GO CRUISE CONTROL

  • Venhovens, P.;Naab, K.;Adiprasito. B.
    • International Journal of Automotive Technology
    • /
    • v.1 no.2
    • /
    • pp.61-69
    • /
    • 2000
  • This paper will address the basic requirements for realizing a stop and go cruise control system. Issues discussed comprise: functional, sensor and basic HMI requirements, primary characterization of naturalistic stop & go driving, and the basic approach of the transformation of situational knowledge in an elementary controller.

  • PDF

Development of a Model Based Predictive Controller for Lane Keeping Assistance System (모델기반 예측 제어기를 이용한 차선유지 보조 시스템 개발)

  • Hwang, Jun-Yeon;Huh, Kun-Soo;Na, Hyuk-Min;Jung, Ho-Gi;Kang, Hyung-Jin;Yoon, Pal-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.54-61
    • /
    • 2009
  • Lane keeping assistant system (LKAS) could save thousands of lives each year by maintaining lane position and is regarded as a promising active safety system. The LKAS is expected to reduce the driver workload and to assist the driver during driving. This paper proposes a model based predictive controller for the LKAS which requires cooperative driving between the driver and the assistance system. A Hardware-In-the-Loop-Simulator (HILS) is constructed for its evaluation and includes Carsim, Matlab Simulink and a lane detection algorithm. The single camera is mounted with the HILS to acquire the monitor images and to detect the lane markers. The simulation is conducted to validate the LKAS control performance in various road scenario.

Lane Departure Warning System using Deep Learning (딥러닝을 이용한 차로이탈 경고 시스템)

  • Choi, Seungwan;Lee, Keontae;Kim, Kwangsoo;Kwak, Sooyeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.2
    • /
    • pp.25-31
    • /
    • 2019
  • As artificial intelligence technology has been developed rapidly, many researchers who are interested in next-generation vehicles have been studying on applying the artificial intelligence technology to advanced driver assistance systems (ADAS). In this paper, a method of applying deep learning algorithm to the lane departure warning system which is one of the main components of the ADAS was proposed. The performance of the proposed method was evaluated by taking a comparative experiments with the existing algorithm which is based on the line detection using image processing techniques. The experiments were carried out for two different driving situations with image databases for driving on a highway and on the urban streets. The experimental results showed that the proposed system has higher accuracy and precision than the existing method under both situations.

A Study on Safety Evaluation Method of LKAS in Actual Road (LKAS의 실도로 안전성 평가방법에 관한 연구)

  • Yoon, PilHwan;Lee, SeonBong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.4
    • /
    • pp.33-39
    • /
    • 2018
  • Recently, the automobile industry has developed ADAS (Advanced Driver Assistance System) to prevent traffic accidents and reduce driver's driving burden. Among the ADAS, the LKAS (Lane Keeping Assistance System) is a support system for the convenience and safety of the driver, and the main function is to maintain the driving lane of the vehicle. LKAS is a system that uses radar sensor and camera sensor to collect information about the position of the vehicle in the lane and to support keeping the lane through control if necessary. In many countries, LKAS has already been commercialized and the convenience and safety of drivers have been improved. The international LKAS evaluation test procedure is being developed and discussed by standardization committees such as the ISO (International Organization for Standardization) and the Euro NCAP (New Car Assessment Program). In Korean, the LKAS test method is specified in the KNCAP (Korean New Car Assessment Program), but the evaluation method is not defined. Therefore, the LKAS test procedure that meets international standards and is suitable for domestic road environment is necessary. In this paper, development of LKAS test evaluation scenarios that meets international standards and considering domestic road environment, and the formula that can evaluate the result value after control as the relative distance of lane and the front wheel are suggested. And a comparative analysis was conducted to verify the validity of the suggested scenario and formula. The test evaluation was conducted using the vehicle equipped with the LKAS.

An evaluation scenario of safety performance for extraordinary service permission of autonomous vehicle (자율주행 자동차 임시운행 허가를 위한 안전 성능 평가 시나리오)

  • Jeong, Yonghwan;Yi, Kyongsu;Choi, In Seong;Min, Kyong Chan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.2
    • /
    • pp.44-49
    • /
    • 2015
  • This paper presents an evaluation scenario of safety performance for extraordinary service permission of autonomous vehicle driving on a motorway. Based on advanced driver assistance system (ADAS) which is already mass-production, an autonomous vehicle driving on motorway is tested on the public roads and also getting close to mass-production. Before the autonomous vehicle tested, the safety of autonomous driving system should be evaluated based on a proper test scenario. Prior to develop the test scenario, this paper reviews the licensing standards for an autonomous vehicle in California and Nevada, and the international regulations of each ADAS. To develop the scenario, the driving conditions of motorway are categorized into five modes and fundamental evaluation requirements of elements of autonomous driving system are derived. An evaluation scenario, which represents the real driving conditions, has been developed to assess the safety of autonomous vehicle. This scenario has validated by computer simulation using model predictive control (MPC) based autonomous driving algorithm.

A Study on the Image DB Construction for the Multi-function Front Looking Camera System Development (다기능 전방 카메라 개발을 위한 영상 DB 구축 방법에 관한 연구)

  • Kee, Seok-Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.219-226
    • /
    • 2017
  • This paper addresses the effective and quantitative image DB construction for the development of front looking camera systems. The automotive industry has expanded the capability of front camera solutions that will help ADAS(Advanced Driver Assistance System) applications targeting Euro NCAP function requirements. These safety functions include AEB(Autonomous Emergency Braking), TSR(Traffic Signal Recognition), LDW(Lane Departure Warning) and FCW(Forward Collision Warning). In order to guarantee real road safety performance, the driving image DB logged under various real road conditions should be used to train core object classifiers and verify the function performance of the camera system. However, the driving image DB would entail an invalid and time consuming task without proper guidelines. The standard working procedures and design factors required for each step to build an effective image DB for reliable automotive front looking camera systems are proposed.

Neighboring Vehicle Maneuver Detection using IMM Algorithm for ADAS (지능형 운전보조시스템을 위한 IMM 기법을 이용한 전방차량 거동추정기법)

  • Jung, Sun-Hwi;Lee, Woon-Sung;Kang, Yeonsik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.718-724
    • /
    • 2013
  • In today's automotive industry, there exist several systems that help drivers reduce the possibility of accidents, such as the ADAS (Advanced Driver Assistance System). The ADAS helps drivers make correct and quick decisions during dangerous situations. This study analyzed the performance of the IMM (Interacting Multiple Model) method based on multiple Kalman filters using the data acquired from a driving simulator. An IMM algorithm is developed to identify the current discrete state of neighboring vehicles using the sensor data and the vehicle dynamics. In particular, the driving modes of the neighboring vehicles are classified by the cruising and maneuvering modes, and the transition between the states is modeled using a Markovian switching coefficient. The performance of the IMM algorithm is analyzed through realistic simulations where a target vehicle executes sudden lane change or acceleration maneuver.

Development of a Vision-based Lane Change Assistance System for Safe Driving (안전주행을 위한 비전 기반의 차선변경보조시스템 개발)

  • Sung, Jun-Yong;Han, Min-Hong;Ro, Kwang-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.329-336
    • /
    • 2006
  • This paper describes a lane change assistance system for the help of safe lane change, which detects vehicles approaching from the rear side by using a computer vision algorithm and notifies the possibility of safe lane change to a driver. In case a driver tries to lane change, the proposed system can detect vehicles and keep track of them. After detecting side lane lines, region of interest for vehicle detection is decided. For detection a vehicle, optical flow technique is applied. The experimental result of the proposed algorithm and system showed that the vehicle detection rate was 91% and the embedded system would have application to a lane change assistance system being commercialized in the near future.

  • PDF