• Title/Summary/Keyword: Driving Mode Control

Search Result 227, Processing Time 0.025 seconds

PI-based Feedforward Control for Driving Mode Transformation of Rescue Robot capable of Obstacle Overcoming (장애물 극복이 가능한 구조로봇의 주행모드 변형을 위한 PI-based Feedforward 제어)

  • Jeong, Hae-Kwan;Kang, Hyun-Suk;Kwak, Yoon-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.489-495
    • /
    • 2008
  • This paper offers a practical control scheme for driving mode transformation of a rescue robot already developed. The rescue robot, VSTR(Variable Single-Tracked Robot), has two driving modes, so can traverse untidy terrain and overcome obstacles such as stairs easily by use of timely driving mode transformation. Classical PI control scheme was used firstly for driving mode transformation, but stationary phenomenon, which might have a bad effect on the performance in real situation, came into existence. Therefore, we suggest a new controller, PI-based feedforward controller, which should be a good alternative for the problem, and compare it with other nonlinear control scheme.

Robust Control of Pneumatic Cylinder Driving System using Sliding Mode Controller (슬라이딩모드 제어기를 이용한 공기압 실린더 구동장치의 강인제어)

  • Jang, Ji-Seong;Han, Seung-Hun
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.101-109
    • /
    • 2017
  • The pneumatic driving system has advantages such as high output power per weight and low heat generation rate. However, it is difficult to control the position because of its strong non-linearity such as large friction forces compared to driving force, and heat transfer characteristics that change during operation. Therefore, in order to achieve the control objectives, a robust controller should be designed considering modeling error and model uncertainty. In this paper, a sliding mode controller is designed to improve the position control performance of pneumatic cylinder driving system. Experimental results show that the designed controller achieves the designed control objectives even if the model of the cylinder driving system, such as the initial pressure inside the cylinder and the initial position of the piston is changed.

Design of a Robust Controller for a Watertight Damper Driving System (수밀댐퍼 구동장치의 강인제어에 관한 연구)

  • Han, Seung Hun;Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.45-51
    • /
    • 2017
  • Semi-submersible drilling rigs are offshore plants that perform functions such as ocean exploration for oil and gas acquisition, drilling and production, and storage and unloading of crude oil and gas. Semi-submersible drilling rigs use watertight dampers as emergency buoyancy holders. Since the watertight damper is an emergency shutoff device, it is mainly driven by a pneumatic driving system that can operate without a power supply. The pneumatic driving system has highly non-linear characteristics due to compressibility of air and external disturbance such as static and Coulomb friction. In this paper, a new control algorithm is proposed for a watertight damper driving system based on the sliding mode control with a disturbance observer. To evaluate control performance and robust stability of the designed controller, the control results were compared with the results obtained using the state feedback controller. As a result, it was confirmed that the pneumatic driving system for driving the watertight damper using the sliding mode controller with a disturbance observer can obtain excellent control performance against the parameter changes and the disturbance input.

Implementation and Balancing Control of a Robotic Vehicle for Entertainment (엔터테인먼트용 로봇차량의 제작과 균형 제어)

  • Kim, Hyun Wook;Cho, Seong-Taek;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.736-740
    • /
    • 2014
  • This paper presents the driving and balancing control of an entertainment robot vehicle that can carry two persons. The entertainment robot vehicle is built with the purpose of carrying passengers with two wheels. It has two driving modes: a balancing mode with two wheels and a driving mode with three wheels. Three cases of different modes are verified by experimental studies. Firstly, a driving mode is tested with two passengers to check the functionality of the vehicle. Secondly, the balancing control performance is tested. Lastly, the balancing control performance under the disturbance is tested.

Automated Driving Lane Change Algorithm Based on Robust Model Predictive Control for Merge Situations on Highway Intersections (고속도로 합류점 주행을 위한 강건 모델 예측 기법 기반 자율주행 차선 변경 알고리즘 개발)

  • Chae, Heongseok;Jeong, Yonghwan;Min, Kyongchan;Lee, Myungsu;Yi, Kyongsu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.575-583
    • /
    • 2017
  • This paper describes the design and evaluation of a driving mode decision algorithm for automated driving for merge situations on highways. For the development of a highly automated driving control algorithm for merge situations, the driving mode decision is crucial for merging appropriately. There are two driving modes: lane keeping and lane changing (merging). The merge mode decision is determined based on the state of the surrounding vehicles and the remaining length of the merge lane. In the merge mode decision algorithm, merge possibility and the desired merge position are decided to change the lane safely and quickly. A safety driving envelope is defined based on the desired driving mode using the information on the surrounding vehicles' behaviors. To obtain the desired steering angle and longitudinal acceleration for maintaining the subject vehicle in the safe driving envelope, a motion planning controller is designed using model predictive control (MPC), with constraints that are decided considering the vehicle dynamics, safe driving envelope, and actuator limit. The proposed control algorithm has been evaluated via computer simulation studies.

Obstacle Detection and Driving Mode Control for a Mobile Robot with Variable Single-tracked Mechanism (가변트랙형 주행로봇의 장애물 탐지와 주행모드제어)

  • Choi, Keun-Ha;Jeong, Hae-Kwan;Hyun, Kyung-Hak;Kwak, Yoon-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.65-71
    • /
    • 2008
  • In this paper, we propose a new driving mode control algorithm for a mobile robot based on obstacle detection. The robot has a variable geometry single-tracked mechanism, so it can maximize a contact length with ground for the adaptability to off-road and puesue a stable system due to the lower center of gravity. However this robot system embodied passive type according to operator. In this reason, several problems are detected. So, this research presents a new method of obstacle detection using PSD infrared sensors and translates the variable tracks on the best suited driving mode actively. And experimental results about mentioned are presented.

Motion Profile Generation Method for Absolute Angular Error Control Mode of Gun/Turret Driving System (포/포탑 구동 시스템의 절대 각 오차 제어 모드에 대한 모션 프로파일 생성 기법)

  • Eom, Myunghwan;Song, Sinwoo;Park, Ilwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.674-686
    • /
    • 2019
  • In this paper, we will discuss the absolute angular error control mode for the Gun/Turret driving system. The Gun/Turret driving controller receives absolute angular error calculated from the fire control system (FCS). Thus, the Gun/Turret driving controller is subjected to step command to cause residual vibration and system unstable. In order to reduce residual vibration and to ensure the system stability, we propose an error motion profile method with two types of trapezoidal and S-Curve. The validity of the proposed error motion profile method is confirmed via simulation by observing that the resulting position error, driving power, and power density satisfied the control performance.

An Intelligent Nano-positioning Control System Driven by an Ultrasonic Motor

  • Fan, Kuang-Chao;Lai, Zi-Fa
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.40-45
    • /
    • 2008
  • This paper presents a linear positioning system and its control algorithm design with nano accuracy/resolution. The basic linear stage structure is driven by an ultrasonic motor and its displacement feedback is detected by a LDGI (Laser Diffraction Grating Interferometer), which can achieve nanometer resolution. Due to the friction driving property of the ultrasonic motor, the driving situation differs in various ranges along the travel. Experiments have been carried out in order to observe and realize the phenomena of the three main driving modes: AC mode (for mm motion), Gate mode (for ${\mu}m$ motion), and DC mode (for nm motion). A proposed FCMAC (Fuzzy Cerebella Model Articulation Controller) control algorithm is implemented for manipulating and predicting the velocity variation during the motion of each mode respectively. The PCbased integral positioning system is built up with a NI DAQ Device by a BCB (Borland $C^{++}$ Builder) program to accomplish the purpose of an intelligent nanopositioning control.

Cornering Stability Control of a Personal Electric Vehicle with Direct-Drive In-Wheel Motors (직접구동 인 휠 모터를 장착한 1인승 전기자동차의 선회안정성제어)

  • Nam, Kanghyun;Eum, Sangjune
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.919-924
    • /
    • 2016
  • This paper proposes a robust control design method for improving the cornering stability of a personal electric vehicle equipped with in-wheel motors. In general, vehicles undergo severe parameter variations and unpredictable disturbances with respect to a wide range of driving conditions (e.g., road surface conditions and vehicle velocity conditions). For this reason, robust control design techniques are required to guarantee consistent driving performances and robustness against various driving conditions. In this paper, an adaptive sliding mode control method is employed to enhance cornering stability by controlling the direct-drive in-wheel motors independently. Additionally, in order to confirm the effectiveness of a proposed control method, real driving tests with an experimental personal electric vehicle are performed.

Experimental Studies on Bouncing and Driving Control of a Robotic Vehicle for Entertainment and Transportation (운송 및 엔터테인먼트용 로봇차량의 바운스 및 주행제어 실험 연구)

  • Cho, Sung Taek;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.266-271
    • /
    • 2015
  • This paper presents the driving and bouncing control of a robotic vehicle for entertainment and transportation. The robotic vehicle is aimed to carry two passengers with a balancing mechanism by two wheels. To maximize the entertaining purpose, not only the balancing control performance but the bouncing control performance is implemented. Passengers can select different driving modes such as regular driving mode, balancing mode, and bouncing mode. Experimental studies of the balancing control performance as well as the bouncing control performance are conducted to see the feasibility as an entertainment robotic vehicle.