• Title/Summary/Keyword: Driving Duty

Search Result 165, Processing Time 0.027 seconds

Influence of Sustain Pulse-width on Electrical Characteristics and Luminous Efficiency in Surface Discharge of AC-PDP

  • Jeong, Yong-Whan;Jeoung, Jin-Man;Choi, Eun-Ha
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.276-279
    • /
    • 2005
  • Influences of sustain pulse-width on electrical characteristics and luminous efficiency are experimentally investigated for surface discharge of AC-PDP. A square pulse with variable duty ratio and fixed rising time of 300 ns has been used in the experiment. It is found that the memory coefficient is significantly increased at the critical pulse-width. And the wall charges and wall voltages as well as capacitances are experimentally measured by Q- V analysis method along with the voltage margin relation, in terms of the sustain pulse-width in the range of $1{\mu}s$ to $5{\mu}s$ under driving frequency of 10 kHz to 180 kHz. And the luminous efficiency is also experimentally investigated in above range of sustain pulse-width with driving frequency of 10 kHz to 180 kHz. It is noted that the luminous efficiency for 10 kHz and 180 kHz are 1.29 1m/W and 0.68 1m/W respectively, since the power consumption for 10 kHz is much less than that for 180 kHz. It has been concluded that the optimal sustain pulse-width is in the range of $2.5 {\~}4.5{\mu}s$ under driving frequency range of 10 kHz and 60 kHz, and in the range of $1.5 {\~} 2.5{\mu}s$ under driving frequency range of 120 kHz and 180 kHz based on observation of memory coefficient, and wall voltage as well as luminous efficiency.

Evaluation on the Additional CO2 by Mobile Air Conditioning Systems of Korean Light-duty Vehicles (국내 소형자동차의 에어컨 가동에 따른 CO2 배출량 평가)

  • Park, Junhong;Lee, Jongtae;Kim, Sunmoon;Kim, Jeongsoo;Kang, Gunwoo
    • Journal of Climate Change Research
    • /
    • v.3 no.4
    • /
    • pp.259-270
    • /
    • 2012
  • Mobile air conditioning(MAC) systems of light-duty vehicles consume the most energy among auxiliary parts. Vehicle $CO_2$ reduction policies in Korea, US EPA and EU include the strategies to reduce additional $CO_2$ by MAC operation with providing incentive for the high-efficient MAC technologies. It is under development how to estimate MAC $CO_2$ and to differentiate advanced or high-efficient MAC system in US EPA and EU. The additional energy by MAC operation would beaffected by not only driving patterns but also environmental conditions such as temperature and humidity. In this study, we estimated MAC $CO_2$ of Korean light-duty vehicles with various driving cycles and environmental conditions. Test results were corrected to reference conditions for varied temperature and humidity during tests to get the comparable data for test vehicles. The test results showed that high-efficient MAC technologies have potential to reduce MAC $CO_2$ approximately by 50%. Considering the rate of MAC $CO_2$ to vehicle $CO_2$, it is expected that the introduction of high-efficient MAC technologies would considerably reduce vehicle $CO_2$ emission in MAC operation.

Emission Characteristics of Hazardous Air Pollutants from Diesel Heavy Duty Buses for Euro 5 according to After-treatment Systems (배출가스 저감장치에 따른 Euro 5 경유 대형버스의 유해대기오염물질 배출특성)

  • Hong, Heekyoung;Mun, Sunhee;Chung, Taekho;Kim, Sunmoon;Seo, Seokjun;Kim, Jounghwa;Jung, Sungwoon;Hong, Youdeog
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.175-184
    • /
    • 2018
  • Emission characteristics of regulated (NOx, PM, CO, NMHC) and unregulated (VOCs, aldehydes, PAHs) air pollutants were investigated for diesel heavy duty buses equipped with different after-treatment systems (DPF+EGR and SCR) under urban driving cycle. The combustion temperature and the working temperature of SCR catalysts were important to make impact on NOx emissions, whereas PM emissions were low. The alkane groups dominated NMVOCs emissions, making 42.6~59.4% of sum of the NMVOCs emissions. Especially, alkane emissions of DPF+EGR-equipped vehicle included DOC had 14.9~15.5% higher than those of SCR-equipped vehicle due to low efficiency of oxidation catalyst. In the case of individual NMVOCs, n-nonane and propylene emissions highly occupied for DPF+EGR and SCR, respectively. Formaldehyde emissions among aldehydes were the highest and PAHs emissions were hardly detected except naphthalene and phenanthrene. The NMHC speciation has been shown to be the highest of the formaldehyde ranged 20.8~21.5%. The results of this study will be contributed to establish Korean HAPs emission inventory for automobile source.

A Study on the Appropriate Level of Electric Light Duty Vehicle Purchase Subsidies (전기 소형화물차 구매보조금의 적정 수준에 대한 연구 환경편익과 TCO-parity를 중심으로)

  • Donggyu Yi;Hocheol Jeon
    • Environmental and Resource Economics Review
    • /
    • v.33 no.1
    • /
    • pp.33-57
    • /
    • 2024
  • This study analyzes the purchase subsidy for electric light-duty vehicles in terms of environmental benefits and total cost of ownership(TCO). For the environmental benefits, we considered the emissions from the power generation mix and reflected the change in efficiency of electric vehicles according to the temperature distribution. The environmental benefits of driving electric vehicles were estimated to be between KRW 2.2 million and KRW 5.3 million. Also, the TCO of electric vehicles compared to diesel vehicles under the current purchase subsidy was estimated to be about KRW 3.6 million lower for business use and about KRW 6.6 million lower for non-business use. These results imply that it is reasonable to lower the unit price of the purchase subsidy even within the same budget. Moreover, the remaining budget could be better spent on upgrading the charging infrastructure, which would reduce the inconvenience of charging for potential buyers.

Three-Dimensional Numerical Study on the Aerodynamic Characteristics around Corner Vane in Heavy-Duty Truck (대형 트럭 코너베인 주위의 공력특성에 관한 3차원 수치해석)

  • 김민호;정우인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.181-189
    • /
    • 2000
  • The aerodynamic characteristics of large transport vehicle has become more and more important in recent vehicle design to improve driving performance in high speed cruising and raise the product valve with regard to a comfortable driving condition. Hence, detailed knowledge of the flow field around truck coner vane is essential to improve fuel efficiency and reduce the dirt contamination on vehicle body surface. In this study, three-dimensional flow characteristics around corner vane attached to truck cabin were computed for the steady, incompressible, and high speed viscous flow, adopting the RNG k-$\varepsilon$ turbulence model. In order to investigate the influence of configuration and structure of corner vane, computations were carried out for four cases at a high Reynolds number, Re=4.1$\times$106 (based on the cabin height). The global flow patterns, drag coefficient and the distributions such as velocity magnitude, turbulent kinetic energy around the corner vane, were examined. As a result of this study, we could identify the flow characteristics around corner vane for the variation of corner vane length and width. Also, suggest the improved structure to reduce the dirt contamination in cabin side.

  • PDF

Fuel Efficiency and Emission Characteristics on Aged Three-way Catalyst of LPG Vehicle (LPG 차량의 삼원촉매 노후화에 따른 연비 및 배출가스 특성)

  • Kang, Minkyung;Kwon, Seokjoo;Kim, Kiho;Seo, Youngho
    • Journal of ILASS-Korea
    • /
    • v.21 no.3
    • /
    • pp.137-143
    • /
    • 2016
  • The LPG vehicles are being operated by commercial purposes generally such as taxis. Most of taxis have a long-mileage and a harsh driving pattern. These properties may accelerate aging of the three-way catalysts much faster than the passenger vehicles. Because of this background, it was analyzed the test result of fuel efficiency and emissions on the LPG-fueled light duty vehicle. It was selected for a LPG vehicle of ULEV level to measure the fuel efficiency and emissions of the aged three-way catalysts. And the aged three-way catalysts which was driven about 300,000km and 550,000km replaced on the test vehicle in consecutive order. As a result, The aged three-way catalysts generally had no effect on fuel efficiency result, and harmful exhaust emissions had been shown to increase in most of the test mode, even though it satisfied the regulation value on most test modes.

Development of Integrated Control Logic of Wheel Motor Drive Electric Bus considering Stability and Driving Performance (휠 모터 구동 전기 버스의 차량 안정성 및 주행 성능을 고려한 통합 제어 로직 개발)

  • Jeong, Jongryeol;Choi, Jongdae;Shin, Changwoo;Lee, Daeheung;Lim, Wonsik;Park, Yeong-Il;Cha, Suk Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.40-48
    • /
    • 2013
  • Recently, many types of electric vehicles including a heavy duty vehicle have been developed and released because of the better fuel economy and less gas products. In this study, research about an electric bus which utilizes the wheel motor drive system was conducted. The wheel motor is a motor connected to the wheel directly only with a simple gear so that the developer can utilize the space efficiently and the whole system efficiency will be better because of simple structure. However, because it is different from former types of vehicles which use the differential gear, the development of the integrated control logic is required in order to meet the vehicle stability and driving performance. The developed control logic is composed with direct yaw moment control, regenerative braking control and slip control logics. It is compared to the control logics which does not consist of direct yaw moment control and slip control when the vehicle is exposed in tough situations. For the unification of the control logic, a few maps were developed and applied to determine the output torque of each motor according to the driving status. As a result, it is shown that the developed control logic is more safe and well follow the target speed than the other control logic applied simulations.

Assessment of Performance of Motor System for City Bus (노선버스용 구동모터 시스템의 성능평가)

  • Lee, Yoon-Ki;Myong, Kwang-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.189-196
    • /
    • 2011
  • Recently, research and development of a hybrid system for passenger cars as well as for heavy-duty vehicles has become more intensive. An electric powertrain system using an electric motor can replace conventional gasoline and diesel engines. The electric motor has a higher efficiency, better acceleration performance, and is more comfortable than conventional powertrain systems; however, new methods for assessing power performance and energy convergence efficiency have to be investigated because the characteristics of an electric motor are entirely different from those of an internal combustion engine (ICE). In this study, an experiment was carried out on a motor (PMSM: Permanent Magnet Synchronous Motor) test bench. One simple driving mode and four other driving modes identified from real-world driving data of a city bus were selected to perform the experiment on the motor test bench. Then, methods for assessing the acceleration performance, energy convergence efficiency, regenerative effect, etc., were investigated. It was found that the energy efficiency of PMSM was about 90% and that 40% of demand energy was regenerated.

Emission Characteristics of Vehicles in CVS-75 Mode Under Various Conditions of Driving Distance, Driving Pattern, and Engine Pre-Heating (CVS-75모드에서 차량의 주행거리, 주행패턴 및 엔진 예열상태에 따른 배출가스 특성)

  • Eom, Myung-Do;Baik, Doo-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.503-508
    • /
    • 2012
  • Recently green house gas emission problem has been issued because $CO_2$ emission is known to cause global warming. Hence, introduces more stringent emission and fuel economy requirements in various countries, including Korea. In this research, $CO_2$ emission factor characteristics of in-use cars, which are the most dominant vehicle type in Korea, were studied, and 129 gasoline vehicles, 100 diesel vehicles, and 34 LPG vehicles were tested on a chassis dynamometer. In the tests, CO and $CO_2$ emissions as well as fuel reduction rates weremeasured. The tests were conducted in the CVS-75 mode, which has been considered for developing emission factors for regulating emissions from light-duty vehicles in Korea. Through experiments, correlations among displacement, fuel consumption efficiency, fuel type, mileage, driving pattern, and $CO_2$ emission were investigated.

A Study for the Fuel Economy Improvement of a Heavy Duty Engine in Commercial Vehicles(II) (상용차 탑재 대형엔진의 차량연비 개선 연구(II))

  • Lyu, Myung-Seok;Doo, Byung-Mann;Ku, Young-Gon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.104-108
    • /
    • 2008
  • Recently, studies conducted by our research group, revealed the possibility for reducing BSFC, NOx and PM emissions to meet the Euro 4 & 5 legislations. The main objective of the present study is to get better fuel economy in commercial vehicles by considering real driving conditions. Firstly, in order to improve fuel economy on fields, specifically it is required to analyze the driving pattern and make the representative modes from real field data. Secondly, it is performed to make the engine dynometer test to optimize the fuel consumption by reflecting on the representative driving modes, based on the Korea 2008 emission legislation equal to the Euro 4. The engine components such as engine calibration, combustion chamber, turbocharger and ancilliaries were modified to optimize vehicle fuel economy over a typical customer drive cycle whilst still meeting the exhaust emission restrictions. Finally, these results were confirmed by field testing of vehicle equipped with the updated calibration engine. It was placed the two vehicles together traveling the same route and accomplishing the same amount of stops(back to back), in order to evaluate the fuel consumption in comparison to the current vehicle. Through several repeats such as the engine calibration and field test, we could get 3 % to 7.7 % vehicle fuel economy improvements compared to previous vehicle.