• Title/Summary/Keyword: Driving Distance

Search Result 662, Processing Time 0.042 seconds

Development of Evaluation Indicators for Optimizing Mixed Traffic Flow Using Complexed Multi-Criteria Decision Approaches (다기준 복합 가중치 결정 기반 혼재 교통류 최적화 평가지표 개발)

  • Donghyeok Park;Nuri Park;Donghee Oh;Juneyoung Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.157-172
    • /
    • 2024
  • Autonomous driving technology, when commercialized, has the potential to improve the safety, mobility, and environmental performance of transportation networks. However, safe autonomous driving may be hindered by poor sensor performance and limitations in long-distance detection. Therefore, cooperative autonomous driving that can supplement information collected from surrounding vehicles and infrastructure is essential. In addition, since HDVs, AVs, and CAVs have different ranges of perceivable information and different response protocols, countermeasures are needed for mixed traffic that occur during the transition period of autonomous driving technology. There is a lack of research on traffic flow optimization that considers the penetration rate of autonomous vehicles and the different characteristics of each road segment. The objective of this study is to develop weights based on safety, operational, and environmental factors for each infrastructure control use case and autonomous vehicle MPR. To develop an integrated evaluation index, infra-guidance AHP and hybrid AHP weights were combined. Based on the results of this study, it can be used to give right of way to each vehicle to optimize mixed traffic.

Finite element analysis for dynamic behavior of a machine tool structure fed in open loop control (개루프제어로 이송되는 공작기계 구조물의 동적 거동을 위한 유한 요소 해석)

  • Choi, Jin-Woo;Lee, Tae-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.596-602
    • /
    • 2010
  • In this study, a fmite element model was developed for analysis of feeding a structure in open loop control The finite element analysis (FEA) can simulate dynamic behavior of the structure of a machine tool rapidly traveling with a screw feeding driving system. The feeding mechanism was implemented with screw element of the FEA tool used in this study. The procedure was developed for the dynamic transient FEA. First, motion parameters such as jerk and velocity were introduced for the structure to be fed in open loop control When its traveling distance was determined, set-points for the distance were generated based on the motion parameters. The set-points were applied to the FE model constructed for the traveling structure. The FEA was executed and evaluated. In this study, the FEA procedure was applied to the column of a machine tool and the dynamic behavior of the column was evaluated. The FEA helps in evaluation of the motion characteristics of a structure. The convergence time of the structure vibration posterior to feeding termination can be estimated and the stiffness of the flexible structure is also evaluated against jerk, and acceleration. It provides the feeding force which is helpful in selection of the feeding motor.

A Dynamic Programming Neural Network to find the Safety Distance of Industrial Field (산업 현장의 안전거리 계측을 위한 동적 계획 신경회로망)

  • Kim, Jong-Man;Kim, Won-Sub;Kim, Yeong-Min;Hwang, Jong-Sun;Park, Hyun-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.09a
    • /
    • pp.23-27
    • /
    • 2001
  • Making the safety situation from the various work system is very important in the industrial fields. The proposed neural network technique is the real titre computation method based theory of inter-node diffusion for searching the safety distances from the sudden appearance-objests during the work driving. The main steps of the distance computation using the theory of stereo vision like the eyes of man is following steps. One is the processing for finding the corresponding points of stereo images and the other is the interpolation processing of full image data from nonlinear image data of obejects. All of them request much memory space and titre. Therefore the most reliable neural-network algorithm is drived for real time recognition of obejects, which is composed of a dynamic programming algorithm based on sequence matching techniques. And the real time reconstruction of nonlinear image information is processed through several simulations. I-D LIPN hardware has been composed, and the real time reconstruction is verified through the various experiments.

  • PDF

A Development of Pendulum Putting Machine for the Experiments of Putting Stroke (퍼팅 스트로크 실험용 진자퍼팅기 개발)

  • Park, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.147-152
    • /
    • 2006
  • The purpose of this study was to develop the experimental machine for the putting strokes. This experimental machine is called Pendulum Putting Machine(PPM). The height of PPM is 75cm and the mass is 10kg. To make the frame of this machine, 24 and 20 diameters of iron pipes were used. Bottom of the frame(bottom girdle) was made with circle shape and top of the frame(top girdle) was made with rectangular shape. Above the top girdle, iron plate($12{\times}17{\times}0.5cm$) was placed to connect the ball bearing. At the top of the frame two ball bearings with axis were placed for the diverse lies of putters and irons. To verify usefulness of this machine, experiments were executed with the PPM. Two major experimental conditions were hitting points(sweet spot, toe side, heel side) and hitting places(bottom, 3cm before bottom, 3cm after bottom). Eleven different cases were tested. The results showed that the diversity of the ball placement(distance and direction) was acceptable(distance range, 2.70-5.87 standard deviation; direction range, 1.71-4.65 standard deviation). Overall the Pendulum Putting Machine is very useful for the study of putting and driving strokes.

Estimation of Propellant Consumption during Thrust Control of GOx/PC Hybrid Rocket (GOx/PC 하이브리드 로켓의 추력제어 환경에서 후퇴거리 예측)

  • Kang, Wan-Kyu;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.526-529
    • /
    • 2009
  • In this study, we analyze the characteristic of burning classified by a propellant according to a flux of an oxidizer to analyze propellant regression distance in accordance with a thrust control and burning time of hybrid rocket using hybrid combustor of Lab-Scale. To control a flux of an oxidizer, we design flow control system to regulate the mount of opening and shutting of a needle valve by a driving of stepping motor by a combination the needle valve with stepping motor. We derive the relationships between mass flow rate and regression rate according to a propellant through the oxidizer flux change. While doing the thrust control, we estimate regression distance through the oxidizer flux in accordance with thrust and confirm the creditability through the actual thrust control burning experimentation.

  • PDF

The Evaluation of Driver's Physiology Signal and Sensibility according to the Change of Speed and the Gap of Platoon on AHS (AHS에서 차량군의 속도와 거리 변화에 따른 운전자의 생체신호와 감성 평가)

  • Jeon, Yong-Uk;Park, Beom
    • Journal of the Ergonomics Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.15-28
    • /
    • 2003
  • The one of the most important factors is the platoon design on developing AH3(Advanced Highway System), as it is related to traffic efficiency and drivers' safety. This study was evaluated that how much speed is comfortable for drivers and how long distance is appropriate for vehicular gap of platoon by measuring drivers' physiology signal and sensibility. A fixed-based AHS simulator was developed by using a real vehicle cockpit and the restructured part of Korean highway for human factors evaluation. The EEG(electroencephalogram), ECG (electrocardiogram) and GSR(Galvanic Skin Response) were measured for obtaining drivers' physiology signal according to the change of speed and gap. The brain wave(${\alpha},\;{\beta},\;{\delta},\;{\theta}$) by EEG, the response of the autonomic nervous system. the sympathetic and parasympathetic nervous system, by ECG, and relax-arousal situation by GSR were analyzed. The SD(Semantic Differential) method was also applied to evaluate drivers' sensibility by 5-grade evaluation scale with 96 adjectives. SSQ(Simulator Sickness Questionnaire) was used to measure the simulator sickness of pre and post driving, two times. As the results, drivers were comfortable with 120km/h speed of platoon and lam to 15m vehicular distance. The results of this study may differ from the adaption of the reality because of many parameters. However, the purpose of this study is show to significant results of the drivers' safety and the acceptability of human factors evaluation.

A Step-wise Elimination Method Based on Euclidean Distance for Performance Optimization Regarding to Chemical Sensor Array (유클리디언 거리 기반의 단계적 소거 방법을 통한 화학센서 어레이 성능 최적화)

  • Lim, Hea-Jin;Choi, Jang-Sik;Jeon, Jin-Young;Byu, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.258-263
    • /
    • 2015
  • In order to prevent drink-driving by detecting concentration of alcohol from driver's exhale breath, twenty chemical sensors fabricated. The one of purposes for sensor array which consists of those sensors is to discriminate between target gas(alcohol) and interference gases($CH_3CH_2OH$, CO, NOx, Toluene, and Xylene). Wilks's lambda was presented to achieve above purpose and optimal sensors were selected using the method. In this paper, step-wise sensor elimination based on Euclidean distance was investigated for selecting optimal sensors and compared with a result of Wilks's lambda method. The selectivity and sensitivity of sensor array were used for comparing performance of sensor array as a result of two methods. The data acquired from selected sensor were analyzed by pattern analysis methods, principal component analysis and Sammon's mapping to analyze cluster tendency in the low space (2D). The sensor array by stepwise sensor elimination method had a better sensitivity and selectivity compared to a result of Wilks's lambda method.

Design and Implementation of Real-time Shortest Path Search System in Directed and Dynamic Roads (방향성이 있는 동적인 도로에서 실시간 최단 경로 탐색 시스템의 설계와 구현)

  • Kwon, Oh-Seong;Cho, Hyung-Ju
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.4
    • /
    • pp.649-659
    • /
    • 2017
  • Typically, a smart car is equipped with access to the Internet and a wireless local area network. Moreover, a smart car is equipped with a global positioning system (GPS) based navigation system that presents a map to a user for recommending the shortest path to a desired destination. This paper presents the design and implementation of a real-time shortest path search system for directed and dynamic roads. Herein, we attempt to simulate real-world road environments, while considering changes in the ratio of directed roads and in road conditions, such as traffic accidents and congestions. Further, we analyze the effect of the ratio of directed roads and road conditions on the communication cost between the server and vehicles and the arrival times of vehicles. In this study, we compare and analyze distance-based shortest path algorithms and driving time-based shortest path algorithms while varying the number of vehicles to search for the shortest path, road conditions, and ratio of directed roads.

Model Creation Algorithm for Multiple Moving Objects Tracking (다중이동물체 추적을 위한 모델생성 알고리즘)

  • 조남형;김하식;이명길;이주신
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.633-637
    • /
    • 2001
  • In this paper, we proposed model creation algorithm for multiple moving objects tracking. The proposed algorithm is divided that the initial model creation step as moving objects are entered into background image and the model reformation step in the moving objects tracking step. In the initial model creation step, the initial model is created by AND operating division image, divided using difference image and clustering method, and edge image of the current image. In the model reformation step, a new model was reformed in the every frame to adapt appearance change of moving objects using Hausdorff Distance and 2D-Logarithmic searching algorithm. We simulated for driving cart in the road. In the result, model was created over 98% in case of irregular approach direction of cars and tracking objects number.

  • PDF

Pattern Recognition Using 2D Laser Scanner Shaking (2D 레이저 스캐너 흔듦을 이용한 패턴인식)

  • Kwon, Seongkyung;Jo, Haejoon;Yoon, Jinyoung;Lee, Hoseung;Lee, Jaechun;Kwak, Sungwoo;Choi, Haewoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.138-144
    • /
    • 2014
  • Now, Autonomous unmanned vehicle has become an issue in next generation technology. 2D Laser scanner as the distance measurement sensor is used. 2D Laser scanner detects the distance of 80m, measured angle is -5 to 185 degree. Laser scanner detects only the plane, but using motor swings. As a result, traffic signs detect and analyze patterns. Traffic signs when driving at low speed, shape of the detected pattern is very similar. By shaking the laser scanner, traffic signs and other obstacles became clear distinction.