• Title/Summary/Keyword: Driving Control System

검색결과 1,672건 처리시간 0.033초

공기압 실린더 구동 장치를 이용한 힘과 위치 동시 제어계 설계 (Design of a Simultaneous Control System of Position and Force with a Pneumatic Cylinder Driving Apparatus)

  • 장지성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1614-1619
    • /
    • 2003
  • In this study, position and force simultaneous trajectory tracking control system with pneumatic cylinder driving apparatus is proposed. The pneumatic cylinder driving apparatus that consists of two pneumatic cylinders constrained in series and two proportional flow control valves offers a considerable advantage as to non-interaction of the actuators because of the low stiffness of the pneumatic cylinders. The controller applied to the driving system is composed of a non-interaction controller to compensate for interaction of two cylinders and a disturbance observer to reduce the effect of model discrepancy of the driving system in the low frequency range that cannot be suppressed by the non-interaction controller. The experimental results with the proposed control system show that the interacting effects of two cylinders are eliminated remarkably and the proposed control system tracks the given position and force trajectories accurately.

  • PDF

포/포탑 구동 시스템의 절대 각 오차 제어 모드에 대한 모션 프로파일 생성 기법 (Motion Profile Generation Method for Absolute Angular Error Control Mode of Gun/Turret Driving System)

  • 엄명환;송신우;박일우
    • 한국군사과학기술학회지
    • /
    • 제22권5호
    • /
    • pp.674-686
    • /
    • 2019
  • In this paper, we will discuss the absolute angular error control mode for the Gun/Turret driving system. The Gun/Turret driving controller receives absolute angular error calculated from the fire control system (FCS). Thus, the Gun/Turret driving controller is subjected to step command to cause residual vibration and system unstable. In order to reduce residual vibration and to ensure the system stability, we propose an error motion profile method with two types of trapezoidal and S-Curve. The validity of the proposed error motion profile method is confirmed via simulation by observing that the resulting position error, driving power, and power density satisfied the control performance.

Steering Control of the Autonomous Guided Vehicle Driving System for Durability Test

  • Jeong, Jong-Won;Lee, Young-Jin;Yoon, Kang-Sup;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.104-104
    • /
    • 2000
  • Among durability tests, the accelerated durability test has been widely used to evaluate the durability of vehicle structure and chassis pans in a shon period of time on the designed road which has severe surface conditions. However it increases the drivers fatigue mainly caused by the severe driving conditions. The drivers difficulty of maintaining constant speed and controlling the steering wheel reduces the reliability of test results. The durability test includes the position and distance sensing system for the recognition of the absolute and relative driving position, the driving control system for the control of whole driving circumstance, the emergency system for responding to system errors. AGVDS (Autonomous Guided Vehicle Driving System) was Proved to facilitate the development of now car projects. Therefore the AGVDS we propose will help make the fundamentals for all future traffic systems.

  • PDF

후륜 인휠 모터 전기자동차의 구동 및 반능동 현가시스템 동시 제어를 통한 주행 성능 분석 (Driving Performance Analysis of a Rear In-wheel Motor Vehicle with Simultaneous Control of Driving Torque and Semi-active Suspension System)

  • 신슬기;최규재
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.11-17
    • /
    • 2015
  • Recently, the in-wheel motor vehicle is rapidly developed to solve energy exhaustion and environmental problems. Especially, it has the advantage of independently driving the torque control of each wheel in the vehicle. However, due to the weight increase of wheel, the comfort of vehicle riding and performance of road holding become worse. In this paper, to compensate the poor performance, a simultaneous control of the driving torque and semi-active suspension system is investigated. A vehicle model is generated using CarSim Software and validated by field tests. Co-simulation of CarSim and MATLAB/Simulink with control logics is carried out, and it is found that simultaneous control of the driving torque and semi-active suspension system can improve driving stability and durability of the in-wheel motor system.

DRIVER BEHAVIOR WITH ADAPTIVE CRUISE CONTROL

  • Cho, J.H.;Nam, H.K.;Lee, W.S.
    • International Journal of Automotive Technology
    • /
    • 제7권5호
    • /
    • pp.603-608
    • /
    • 2006
  • As an important and relatively easy to implement technology for realizing Intelligent Transportation Systems(ITS), Adaptive Cruise Control(ACC) automatically adjusts vehicle speed and distance to a preceding vehicle, thus enhancing driver comfort and safety. One of the key issues associated with ACC development is usability and user acceptance. Control parameters in ACC should be optimized in such a way that the system does not conflict with driving behavior of the driver and further that the driver feels comfortable with ACC. A driving simulator is a comprehensive research tool that can be applied to various human factor studies and vehicle system development in a safe and controlled environment. This study investigated driving behavior with ACC for drivers with different driving styles using the driving simulator. The ACC simulation system was implemented on the simulator and its performance was evaluated first. The Driving Style Questionnaire(DSQ) was used to classify the driving styles of the drivers in the simulator experiment. The experiment results show that, when driving with ACC, preferred headway-time was 1.5 seconds regardless of the driving styles, implying consistency in driving speed and safe distance. However, the lane keeping ability reduced, showing the larger deviation in vehicle lateral position and larger head and eye movement. It is suggested that integration of ACC and lateral control can enhance driver safety and comfort even further.

영상처리를 이용하는 볼 로봇의 위치 인식 방법을 적용한 주행 제어 시스템 (Driving Control System applying Position Recognition Method of Ball Robot using Image Processing)

  • 허남규;이광민;박성현;김민지;박성구;정명진
    • 전기전자학회논문지
    • /
    • 제25권1호
    • /
    • pp.148-155
    • /
    • 2021
  • 로봇 기술이 발전함에 따라 모바일 로봇의 주행 시스템에 대한 연구가 활발히 진행되고 있다. 2륜 및 4륜의 휠을 기반으로 구성되는 모바일 로봇의 주행 시스템은 직선과 같은 단반향 주행에 장점이 있으나 방향 전환 및 제자리 회전에 단점을 가지고 있다. 볼을 휠로 사용하는 볼 로봇은 전방향 이동에 장점이 있으나, 구조적인 불안정한 특성에 의해 균형을 유지하기 위한 자세 제어 및 이동을 위한 주행 제어가 요구된다. 기존의 볼 로봇은 모터에 부착된 엔코더를 이용하여 주행제어를 위한 위치를 추정함으로써 오차가 누적되는 한계를 가지고 있다. 본 연구에서는 영상처리를 통해 볼 로봇의 위치 좌표를 추정하고, 이를 주행 제어에 사용하는 주행 제어 시스템을 제안하였다. 볼 로봇의 위치를 추정하기 위한 영상처리부, 통신부, 표시부 및 제어부를 포함하는 볼 로봇의 주행 제어 시스템을 설계 및 제작하고, 주행 제어 시스템을 적용한 볼 로봇의 주행 실험을 통해 x축 방향 ±50.3mm 및 y축 방향 ±53.9mm의 오차범위 이내에서 오차의 누적 없이 제어됨을 확인하였다.

Driving Performance of Adaptive Driving Controls using Drive-by-Wire Technology for People with Disabilities

  • Kim, Younghyun;Kim, Yongchul
    • 대한인간공학회지
    • /
    • 제35권1호
    • /
    • pp.11-27
    • /
    • 2016
  • Objective: The purpose of this study was to develop and evaluate high technology adaptive driving controls, such as mini steering wheel-lever system and joystick system, for the people with physical disabilities in the driving simulator. Background: The drivers with severe physical disabilities have problems in operation of the motor vehicle because of reduced muscle strength and limited range of motion. Therefore, if the remote control system with driver-by-wire technology is used for adaptive driving controls for people with physical limitations, the disabled people can improve their quality of life by driving a motor vehicle. Method: We developed the remotely controlled driving simulator with drive-by-wire technology, e.g., mini steering wheel-lever system and joystick system, in order to evaluate driving performance in a safe environment for people with severe physical disabilities. STISim Drive 3 software was used for driving test and the customized Labview program was used in order to control the servomotors and the adaptive driving devices. Thirty subjects participated in the study to evaluate driving performance associated with three different driving controls: conventional driving control, mini steering wheel-lever controls and joystick controls. We analyzed the driving performance in three different courses: straight lane course for acceleration and braking performance, a curved course for steering performance, and intersections for coupled performance. Results: The mini steering wheel-lever system and joystick system developed in this study showed no significant statistical difference (p>0.05) compared to the conventional driving system in the acceleration performance (specified speed travel time, average speed when passing on the right), steering performance (lane departure at the slow curved road, high-speed curved road and the intersection), and braking performance (brake reaction time). However, conventional driving system showed significant statistical difference (p<0.05) compared to the mini steering wheel-lever system or joystick system in the heading angle of the vehicle at the completion point of intersection and the passing speed of the vehicle at left turning. Characteristics of the subjects were found to give a significant effect (p<0.05) on the driving performance, except for the braking reaction time (p>0.05). The subjects with physical disabilities showed a tendency of relatively slow acceleration (p<0.05) at the straight lane course and intersection. The steering performance and braking performance were confirmed that there was no statistically significant difference (p>0.05) according to the characteristics of the subjects. Conclusion: The driving performance with mini steering wheel-lever system and joystick control system showed no significant statistical difference compared to conventional system in the driving simulator. Application: This study can be used to design primary controls with driver-by-wire technology for adaptive vehicle and to improve their community mobility for people with severe physical disabilities.

Intelligent Online Driving System

  • Xuan, Chau-Nguyen;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.479-479
    • /
    • 2000
  • Recently, IVS(Intelligent Vehicle Systems) or ITS(Intelligent Traffic Systems) are much concerned subjects of automotive industry. In this paper, we will introduce an Intelligent Online Driving System for a car. This system allows the driver to be able to drive the car just by operating an integrated joystick. The proposed driving system could be implemented into any car and the key point of the design is that the driver still can drive the car as normal without using the joystick. Our Intelligent Online Driving System includes the integrated joystick, steering wheel control system, brake and acceleration (B&A)pedals control system, and the central control computer system. Steering wheel and B&A pedals are controlled by AC servo-motors. The integrated joystick generates the desired positions and the embedded computer controls these two servomotors to track the commands given by joystick. The control method for two servo-motors is PID control.

  • PDF

자동주행차량의 안전성 향상을 위한 원격비상정지시스템 (Remote Emergency Stop System to Improve Safety of Automated Driving Vehicle)

  • 유영재
    • 제어로봇시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.194-198
    • /
    • 2015
  • In this paper, a remote emergency stop system to improve the safety of an automated driving vehicle is proposed. One of the most serious problems of the previous wireless remote emergency system is that it does not work when the wireless channel is damaged in case of an emergency because it is composed of a single communication channel. Therefore, the proposed remote emergency stop system composed of a portable wireless remote system and a stationary wireless remote system is designed and the remote emergency stop system for automated driving vehicles is developed. By applying it to an automated driving vehicle to check it's performance, the wireless remote system is tested. Emergency stops using the portable wireless remote system is tested when the stationary wireless remote system is disconnected. Also, emergency stops using the stationary wireless remote system are tested when the portable wireless remote system is disconnected. The results of the emergency stop test show a satisfactory performance.

2축 공기압 실린더 구동장치의 위치 동기 제어 (Position Synchronous Control of Two Axes Pneumatic Cylinder Driving Apparatus)

  • 장지성
    • 동력기계공학회지
    • /
    • 제8권4호
    • /
    • pp.24-30
    • /
    • 2004
  • In this study, a position synchronous control algorithm applied to two-axes pneumatic cylinder driving apparatus is proposed. The position synchronous control algorithm is composed of position controller and synchronous controller. The position controller is designed to minimize the effect of several nonlinear characteristics peculiar to the pneumatic cylinder driving apparatus on position control performance. The synchronous controller is designed to reduce the synchronous error. The effectiveness of the proposed controller is proved by simulation results.

  • PDF