• 제목/요약/키워드: Driving Assistance System

검색결과 122건 처리시간 0.024초

실도로 주행 조건 기반의 자율주행자동차 고위험도 평가 시나리오 개발 및 검증에 관한 연구 (A Study on Development of High Risk Test Scenario and Evaluation from Field Driving Conditions for Autonomous Vehicle)

  • 정승환;유제명;정낙승;유민상;편무송;김재부
    • 자동차안전학회지
    • /
    • 제10권4호
    • /
    • pp.40-49
    • /
    • 2018
  • Currently, a lot of researches about high risk test scenarios for autonomous vehicle and advanced driver assistance systems have been carried out to evaluate driving safety. This study proposes new type of test scenario that evaluate the driving safety for autonomous vehicle by reconstructing accident database of national automotive sampling system crashworthiness data system (NASS-CDS). NASS-CDS has a lot of detailed accident data in real fields, but there is no data of accurate velocity in accident moments. So in order to propose scenario generation method from accident database, we try to reconstruct accident moment from accident sketch diagram. At the same step, we propose an accident of occurrence frequency which is based on accident codes and road shapes. The reconstruction paths from accident database are integrated into evaluation of simulation environment. Our proposed methods and processor are applied to MILS (Model In the Loop Simulation) and VILS (Vehicle In the Loop Simulation) test environments. In this paper, a reasonable method of accident reconstruction typology for autonomous vehicle evaluation of feasibility is proposed.

Personal Driving Style based ADAS Customization using Machine Learning for Public Driving Safety

  • Giyoung Hwang;Dongjun Jung;Yunyeong Goh;Jong-Moon Chung
    • 인터넷정보학회논문지
    • /
    • 제24권1호
    • /
    • pp.39-47
    • /
    • 2023
  • The development of autonomous driving and Advanced Driver Assistance System (ADAS) technology has grown rapidly in recent years. As most traffic accidents occur due to human error, self-driving vehicles can drastically reduce the number of accidents and crashes that occur on the roads today. Obviously, technical advancements in autonomous driving can lead to improved public driving safety. However, due to the current limitations in technology and lack of public trust in self-driving cars (and drones), the actual use of Autonomous Vehicles (AVs) is still significantly low. According to prior studies, people's acceptance of an AV is mainly determined by trust. It is proven that people still feel much more comfortable in personalized ADAS, designed with the way people drive. Based on such needs, a new attempt for a customized ADAS considering each driver's driving style is proposed in this paper. Each driver's behavior is divided into two categories: assertive and defensive. In this paper, a novel customized ADAS algorithm with high classification accuracy is designed, which divides each driver based on their driving style. Each driver's driving data is collected and simulated using CARLA, which is an open-source autonomous driving simulator. In addition, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) machine learning algorithms are used to optimize the ADAS parameters. The proposed scheme results in a high classification accuracy of time series driving data. Furthermore, among the vast amount of CARLA-based feature data extracted from the drivers, distinguishable driving features are collected selectively using Support Vector Machine (SVM) technology by comparing the amount of influence on the classification of the two categories. Therefore, by extracting distinguishable features and eliminating outliers using SVM, the classification accuracy is significantly improved. Based on this classification, the ADAS sensors can be made more sensitive for the case of assertive drivers, enabling more advanced driving safety support. The proposed technology of this paper is especially important because currently, the state-of-the-art level of autonomous driving is at level 3 (based on the SAE International driving automation standards), which requires advanced functions that can assist drivers using ADAS technology.

Super-multiview windshield display for driving assistance

  • Urano, Yohei;Kashiwada, Shinji;Ando, Hiroshi;Nakamura, Koji;Takaki, Yasuhiro
    • Journal of Information Display
    • /
    • 제12권1호
    • /
    • pp.43-46
    • /
    • 2011
  • A three-dimensional windshield display (3D-WSD) can present driving information at the same depth as the objects in the outside scene. Herein, a super-multiview 3D-WSD is proposed because the super-multiview display technique provides smooth motion parallax. Motion parallax is the only physiological cue for perceiving the depth of a 3D image displayed at a far distance, which cannot be perceived by vergence and binocular parallax. A prototype system with 36 views was constructed, and the discontinuity of motion parallax and accuracy of depth perception were evaluated.

Prescan을 활용한 ADAS 차량의 AEBS에 대한 사고 재현 시뮬레이션 연구 (A Study on the Accident Reconstruction Simulation about AEBS of ADAS Vehicle using Prescan)

  • 김종혁;이재형;김송희;최지훈;전우정
    • 자동차안전학회지
    • /
    • 제15권4호
    • /
    • pp.23-31
    • /
    • 2023
  • In recent years, the technology for autonomous driving has been advancing rapidly, ADAS (Advanced Driver Assistance System) functions, which improve driver convenience and safety performance, are mostly equipped in recently released vehicles and range from level 0 to level 2 in autonomous driving technology. Among the various functions of ADAS, AEBS (Autonomous Emergency Braking System), which analyzes traffic accidents, is the most closely related to the vehicle's braking. This study developed a simulation technique for reproducing accidents related to AEBS based on real vehicle experimental data, and it was applied to the analysis of actual ADAS vehicle accidents to identify the causes of accidents.

실시간 임베디드 리눅스 기반 노약자 지원 로봇 개발 (Elderly Assistance System Development based on Real-time Embedded Linux)

  • 고재환;양길진;최병욱
    • 제어로봇시스템학회논문지
    • /
    • 제19권11호
    • /
    • pp.1036-1042
    • /
    • 2013
  • In this paper, an elderly assistance system is developed based on Xenomai, a real-time development framework cooperating with the Linux kernel. A Kinect sensor is used to recognize the behavior of the elderly and A-star search algorithm is implemented to find the shortest path to the person. The mobile robot also generates a trajectory using a digital convolution operator which is based on a Bezier curve for smooth driving. In order to follow the generated trajectory within the control period, we developed real-time tasks and compared the performance of the tracking trajectory with that of non real-time tasks. The real-time task has a better result on following the trajectory within the physical constraints which means that it is more appropriate to apply to an elderly assistant system.

DGPS를 이용한 GIS기반의 차선 이탈 검지 연구 (Detecting Lane Departure Based on GIS Using DGPS)

  • 문상찬;이순걸;김재준;김병수
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.16-24
    • /
    • 2012
  • This paper proposes a method utilizing Differential Global Position System (DGPS) with Real-Time Kinematic (RTK) and pre-built Geo-graphic Information System (GIS) to detect lane departure of a vehicle. The position of a vehicle measured by DGPS with RTK has 18 cm-level accuracy. The preconditioned GIS data giving accurate position information of the traffic lanes is used to set up coordinate system and to enable fast calculation of the relative position of the vehicle within the traffic lanes. This relative position can be used for safe driving by preventing the vehicle from departing lane carelessly. The proposed system can be a key component in functions such as vehicle guidance, driver alert and assistance, and the smart highway that eventually enables autonomous driving supporting system. Experimental results show the ability of the system to meet the accuracy and robustness to detect lane departure of a vehicle at high speed.

초음파 센서를 이용한 모션 인식 차량 통합 제어 장치의 제작 및 실험 (Fabrication and Experiment of Ultrasonic Sensor Integrated Motion Recognition Device for Vehicle Manipulation)

  • 나영민;박종규;이현석;강태훈
    • 센서학회지
    • /
    • 제24권3호
    • /
    • pp.175-180
    • /
    • 2015
  • Worldwide, studies on intelligent vehicles for the convenience of drivers have been actively conducted as the number of cars has increased. However, vehicle convenience enabled by buttons lowers the concentration on driving and hence poses as a huge threat to the safety of the driver. The use of one of the convenient features, impaired driving auxiliary equipment, is limited because of its complex usage, and this device also hinders the front view of the driver. This paper proposes a vehicle-control device for controlling the convenient features as well as changes in speed and direction using gestures and motions of the driver. This device consists of an ultrasonic sensor for recognizing movement, an arduino for accepting signal control functions and servo and DC motors apply to various vehicle parts. Firstly, the vehicle-control device was designed using a 3D CAD program known as Solid-works based on the size of the steering wheel. Then, through simulations, a suitable length for minimizing the absorbent between ultrasonic sensors was confirmed using a program known as COMSOL Multiphysics. Finally, simulation results were verified through experiments, and the optimal size of the device was identified through the number of errors.

교차로 주요 사고 시나리오에 대한 비전 센서와 레이더 센서의 사고 예방성능 평가 (Evaluation of Accident Prevention Performance of Vision and Radar Sensor for Major Accident Scenarios in Intersection)

  • 김예은;탁세현;김정윤;여화수
    • 한국ITS학회 논문지
    • /
    • 제16권5호
    • /
    • pp.96-108
    • /
    • 2017
  • 기존의 첨단 운전자 지원 시스템 (Advanced Driver Assistance System, ADAS)들은 전방 위험탐지와 같은 한정적 상황에서의 사고 예방에 집중하고 있어 다양한 사고 시나리오가 존재하는 교차로에 적용하기에는 한계를 가지고 있다. 또한 기존 연구는 주로 사고 요인 분석에 집중하고 있어 첨단 운전자 지원 시스템의 사고 예방 성능에 관한 연구는 미비한 편이다. 이에 본 연구에서는 비전 및 레이더 센서 기반 첨단 운전자 지원 시스템의 다양한 교차로 사고 예방에 대한 성능을 평가하고 대책을 마련하고자 한다. 이를 위하여 미국의 Second Strategic Highway Research Program(SHRP2)의 naturalistic driving study(NDS)에서 수집된 사고/준사고 상황의 거리 측정 데이터를 기반으로 16개의 교차로 사고 시나리오를 도출하였고, 총 363건의 차량과 차량 간 사고를 분석하였다. 분석 결과 16개의 사고 시나리오 중 0.7의 사고 예방율을 기준으로 카메라 기반 시스템은 5개, 레이더 기반 시스템은 4개의 사고 시나리오에서 사고를 예방할 수 있었다.

딥러닝 기반의 자동차 분류 및 추적 알고리즘 (Vehicle Classification and Tracking based on Deep Learning)

  • 안효창;이용환
    • 반도체디스플레이기술학회지
    • /
    • 제22권3호
    • /
    • pp.161-165
    • /
    • 2023
  • One of the difficult works in an autonomous driving system is detecting road lanes or objects in the road boundaries. Detecting and tracking a vehicle is able to play an important role on providing important information in the framework of advanced driver assistance systems such as identifying road traffic conditions and crime situations. This paper proposes a vehicle detection scheme based on deep learning to classify and tracking vehicles in a complex and diverse environment. We use the modified YOLO as the object detector and polynomial regression as object tracker in the driving video. With the experimental results, using YOLO model as deep learning model, it is possible to quickly and accurately perform robust vehicle tracking in various environments, compared to the traditional method.

  • PDF

변형 보정과 원형 추적법에 의한 교통 표지판 인식 (Traffic Sign Recognition by the Variant-Compensation and Circular Tracing)

  • 이우범
    • 융합신호처리학회논문지
    • /
    • 제9권3호
    • /
    • pp.188-194
    • /
    • 2008
  • 본 논문에서는 지능형 자동차의 주행보조 시스템 중의 하나인 교통 표지판 인식을 위한 새로운 방법을 제안한다. 제안한 방법은 잡음, 회전, 크기 등의 변형된 교통 표지판으로부터 기하학적 방법을 이용하여 변형된 정도를 추정하여 교통 표지판 원형으로 보정한다. 그리고 교통 표지판 인식을 위해서 보정된 표지판 영상으로부터 순차적 색기반 군집화(Sequential color-based clustering)에 의한 주의, 규제, 지시, 보조 등의 1차적 분류에 따라서 해당 교통 표지판의 형태 특징인 인식 심벌을 추출한다. 그리고 추출된 인식 심벌에 원형 추척법을 적용하여 교통 표지판 최종 인식 작업을 수행한다. 제안하는 방법의 성능 평가를 위해서 교통 표지판 영상에 잡음, 회전, 크기 등의 임의 변형을 적용하여 다양한 실험 영상을 만들고, 적용한 결과 단일 변형에서는 95%, 혼합 변형에서는 93% 이상의 인식률을 보인다.

  • PDF