This study presents the design and experimental result of a GaN-based DC-DC converter with an integrated gate driver. The GaN device is attractive to power electronic applications due to its superior device performance. However, the switching loss of a GaN-based power converter is susceptible to the common source inductance, and converter efficiency is severely degraded with a large loop inductance. The objective of this study is to achieve high-efficiency power conversion and the highest power density using a multiphase integrated half-bridge GaN solution with minimized loop inductance. Before designing the converter, several GaN and Si devices were compared and loss analysis was conducted. Moreover, the impact of common source inductance from layout parasitic inductance was carefully investigated. Experimental test was conducted in buck mode operation at 48 -12 V, and results showed a peak efficiency of 97.8%.
In recent years, non-volatile memory express (NVMe), a new host controller interface standard, has been adapted to overcome performance bottlenecks caused by the acceleration of solid state drives (SSD). Recently, performance breakthrough cases over AHCI based SATA SSDs by adapting NVMe based PCI Express (PCIe) SSD to servers and PCs have been reported. Furthermore, replacing legacy eMMC-flash storage with NVMe based storage is also considered for next generation of mobile devices such as smartphones. The Linux kernel includes drivers for NVMe support, and as the kernel version increases, the implementation of the NVMe driver code has changed. However, mobile devices are often equipped with older versions of Android operating systems (OSes), where the newest features of NVMe drivers are not available. Therefore, different features of different NVMe driver implementations are not well evaluated on Android OSes. In this paper, we analyze the response time of the NVMe driver for various Linux kernel version.
Recently, the automotive technology has developed with electronics and information technology as convergence technology while vehicles had been regarded as machines. Moreover, vehicles are becoming more intelligent and safer devices, assembly of advanced technologies by customers' demand. Even though all of installations of vehicle have attracted as diverting devices, it cause drivers' mistakes like delay of response on traffic condition. Here, we proposed the Field Operational Test (FOT) environment which could be used as driving and road conditions collector(Vehicle motion, Traffic condition, Driver input, Driver state, etc.) for researches about Driver Friendly Intelligent System(SCC, LDWS, etc.), Human Vehicle Interface(Driving Workload, etc.) and Economic Drive Model. Furthermore driving patten and fuel consumption patten of drivers were analyzed by measured data and direction of future research was suggested.
This paper describes the design and implementation of a trigger circuit which can be series connected with main pulse circuit for a xenon flash lamp driver. For generating high voltage, the trigger circuit is designed as an inductive energy storage pulsed power modulator with 2 state step-up circuit consisting of a boost converter and a flyback circuit. In order to guarantee pulse width, a resonant capacitor on the output side of the flyback circuit is designed. This capacitor limits the output voltage to protect the flyback switch. In addition, to protect another power supply of xenon flash lamp driver from trigger pulse, the high voltage transformer which can carry the full current of main pulse is designed. To verify the proposed design, the trigger circuit is developed with the specification of maximum 23 kV, 0.6 J/pulse output and tested with a xenon flash lamp driver consisting of a main pulse circuit and a simmer circuit.
A Consider the dead man's switch installed in each and every locomotive cab, which support operational safety on railways around the world. The concept is very simple - every 150 to 180 seconds an illuminated push-button demands to be acknowledged so as to know that the Train Driver is alive and active. In the absence of a response over a period of minutes, the vigilance control will automatically apply the train brakes and bring the train to a stand. If we multiply the resetting of the vigilance control 60 times per hour by a 10-hour shift it equals 600 presses of the button during the shift that a Train Driver must pay attention to and acknowledge. This adds a fair bit of pressure on the train driver's job, particularly when he/she is driving through stations, with passengers moving about on platforms in an environment of complex signaling arrangements - all the while looking out for restricting signals. From this perspective, the Vigilance System's demand to be acknowledged every 150/180 seconds is disturbing and can unnecessarily take a driver's attention away from what is happening outside the confines of the cab. A much more dramatic situation can happen when a train driver is driving hour after hour at night when, by Mother's Nature request - people need to sleep. Experience and research shows that the the dead man's switch can be pressed by train driver in a state of deep relaxation and 'micro-sleep'. The vigilance control system which is applied to reduce the drive load considering bio-response multiple unit train is proposed.
Objective: The purpose of this study was to analyze 'response time', 'peak response time' and 'overshoot value' for each muscle by applying the EMG signal to the vehicle response in ISO 7401 and to quantify the response of the driver according to vehicle characteristics by comparing vehicle characteristics and muscle responses of the driver. Background: The Open-loop test defined in international standards ISO 7401 is the only method for evaluating the performance of the vehicle. However, this test was focused only on mechanical responses, not driver's ones. Method: One skilled male driver(22 yrs. experience) was participated in this experiment to measure muscle activities of the driver in transient state. Then the seven muscle signals were applied to calculate 'response time', 'peak response time', and 'overshoot value'. Results: In the analyses of the EMG data, the effects of vehicle type and muscle were statistically significant on the 'response time' and 'peak response time'. Also, the effects of vehicle type, muscle, and lateral acceleration level were statistically significant on the 'overshoot value' in this study. According to the analyses of the vehicle motion data, vehicle motion variable(LatAcc, Roll, YawVel) was statistically significant on the 'response time' and vehicle type, vehicle motion variable, and lateral acceleration level were statistically significant on the 'peak response time', respectively. Conclusion: In the analyses of the 'response time' and 'overshoot value', the data of muscle activities(EMGs) was better index that could evaluate the vehicle characteristic and performance than the data of vehicle motion. In case of peak response time, both EMG and vehicle motion data were good index. Application: The EMGs data from a driver might be applicable as index for evaluation of various vehicle performances based on this study.
For decades, simulation technique has been well validated in areas such as computer and communication systems. Recently, the technique has been much used in the area of transportation and traffic forecasting. Several methods have been proposed for investigating complex traffic flows. However, the dynamics of vehicles and diversities of driver characteristics have never been considered sufficiently in these methods, although they are considered important factors in traffic flow analysis. In this paper, we propose a traffic simulation tool called Multi-Agent for Traffic Simulation with Vehicle Dynamics Model (MATDYMO). Road transport consultants, traffic engineers and urban traffic control center managers are expected to use MATDYMO to efficiently simulate traffic flow. MATDYMO has four sub systems: the road management system, the vehicle motion control system, the driver management system, and the integration control system. The road management system simulates traffic flow for various traffic environments (e.g., multi-lane roads, nodes, virtual lanes, and signals); the vehicle motion control system constructs the vehicle agent by using various vehicle dynamic models; the driver management system constructs the driver agent capable of having different driving styles; and lastly, the integrated control system regulates the MATDYMO as a whole and observes the agents running in the system. The vehicle motion control system and driver management system are described in the companion paper. An interrupted and uninterrupted flow model were simulated, and the simulation results were verified by comparing them with the results from a commercial software, TRANSYT-7F. The simulation result of the uninterrupted flow model showed that the driver agent displayed human-like behavior ranging from slow and careful driving to fast and aggressive driving. The simulation of the interrupted flow model was implemented as two cases. The first case analyzed traffic flow as the traffic signals changed at different intervals and as the turning traffic volume changed. Second case analyzed the traffic flow as the traffic signals changed at different intervals and as the road length changed. The simulation results of the interrupted flow model showed that the close relationship between traffic state change and traffic signal interval.
매년 교통사고의 가장 큰 원인으로 손꼽히는 졸음운전은 운전자의 수면 부족, 산소 부족, 긴장감의 저하, 신체의 피로 등과 같은 다양한 요인을 동반한다. 졸음 유무를 확인하는 일반적인 방법으로 운전자의 표정과 주행패턴을 파악하는 방법, 심전도, 산소포화도, 뇌파와 같은 생체신호를 분석하는 방법들이 연구되고 있다. 본 논문은 영상을 검출하는 딥러닝 모델과 생체 신호 측정 기술을 이용한 운전자 피로 감지 시스템을 제안한다. 제안 방법은 일차적으로 딥러닝을 이용하여 운전자의 눈 모양과 하품 유무, 졸음으로 예상되는 신체 동작을 파악하여 졸음 상태를 감지한다. 이차적으로 맥파 신호와 체온을 이용하여 운전자의 피로 상태를 파악하여 시스템의 정확도를 높이도록 설계하였다. 실험 결과, 실시간 영상에서 운전자의 졸음 유무 판별이 안정적으로 가능하였으며 각성상태와 졸음 상태에서의 분당 심박수와 체온을 비교하여 본 연구의 타당성을 확인할 수 있었다.
교통사고 원인 중 가장 큰 비율을 차지하는 것이 운전자의 부주의로서 이를 검출하는 연구가 꾸준히 진행되고 있다. 본 논문은 부주의한 운전자를 정확히 검출하고, 검출된 운전자의 모습에서 가장 특징적인 영역을 선정(Localize)하는 방법을 제안한다. 제안하는 방법은 운전자의 부주의를 검출하기 위해서 CAM(Class Activation Map) 기반의 전체 클래스를 분류하는 CNN 모델과 이 모델에서 혼동하거나 공통된 특징 영역을 갖는 클래스들에 대한 상세 분류가 가능한 네 개의 서브 클래스 CNN 모델을 계층적으로 구성한다. 각 모델에서 출력한 분류 결과는 CNN 특징맵들과의 매칭 정도를 표현하는 새로운 특징으로 간주해서 수평적으로 결합하고 학습하여 분류의 정확성을 높였다. 또한 전체 및 상세 분류 모델의 분류 결과를 반영한 히트맵 결과를 결합하여 이미지의 특징적인 주의 영역을 찾아낸다. 제안한 방법은 State Farm 데이터 셋을 이용한 실험에서 95.14%의 정확도를 얻었으며, 이는 기존에 동일한 데이터 셋을 이용한 결과 중 가장 높은 정확도인 92.2%보다 2.94% 향상된 우수한 결과이다. 또한 전체 모델만을 이용했을 때 찾아진 주의 영역보다 훨씬 의미 있고 정확한 주의 영역이 찾아짐을 실험으로 확인하였다.
본 논문은 차량의 내부 및 외부 정보를 통합하여 운전자의 인지 상태를 측정하고, 안전운전을 보조하여 주는시스템을 제안한다. 구현된 시스템은 운전자의 시선 정보와 외부 영상을 분석하여 얻은 주변정보를 mutual information기반으로 통합하여 구현되며, 차량의 앞부분과 내부 운전자를 검출하는 2개의 카메라를 이용한다. 외부 카메라에서 정보를 얻기 위해 선택적 집중모델을 기반으로 하는 게슈탈트법칙을 제안하고, 이를 기반으로 구현된 saliency map (SM) 모델은 신호등과 같은 중요한 외부 자극을 두드러지게 표현한다. 내부 카메라에서는 얼굴의 특징정보를 이용하여 운전자의 주의가 집중되는 외부 응시 정보를 파악하고 이를 통해 운전자가 응시하고 있는 영역을 검출한다. 이를 위해서 우리는 실시간으로 운전자의 얼굴특징을 검출하는 알고리즘을 사용한다. 운전자의 얼굴을 검출하기 위하여 modified census transform (MCT) 기반의 Adaboost 알고리즘을 사용하였으며, POSIT (POS with ITerations)알고리즘을 통해 3차원 공간에서 머리의 방향과 운전자 응시 정보를 측정하였다. 실험결과를 통하여 제안한 시스템이 실시간으로 운전자의 응시하고 있는 영역과, 신호등과 같은 운전에 도움이 되는 정보를 파악하는데 도움이 되었음을 확인할 수 있으며, 이러한 시스템이 운전보조 시스템에 효과적으로 적용될 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.