• Title/Summary/Keyword: Driver IC

Search Result 203, Processing Time 0.026 seconds

A Study on Data Driver IC for Field Emission Display (FED 용 Data Driver IC에 관한 연구)

  • Jang, Young-Min;Lee, Jin-Seok;Lee, Jun-Sung;Cho, Jun-Dong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.797-800
    • /
    • 2004
  • FED(Field Emission Display)는 CRT(Cathode Ray Tube)의 화질과 LCD(Liquid Crystal Display)와 같은 FPD(Flat Panel Display)의 경량, 박형의 장점을 만족시키는 차세대 Display 소자로서 주목을 받고 있다. 본 논문은 저항열을 이용하여 256 Gray-Scale Level을 출력하는 8 비트 FED Data Driver IC 설계에 관한 것이다. 즉, 저항열과 D/A 변환기를 통하여 디지털 입력 데이터에 따른 아날로그 출력 데이터를 갖는 FED 용 Data Driver IC이다. 본 논문에서 설계된 Driver IC는 집적도를 높여 Output Channel 수를 증가시키는 것을 목표로, 하이닉스 0.6um High Voltage 공정을 사용하였으며, 8 비트 RGB 데이터 입력과 40V 구동전압에서 동작하도록 설계하였다.

  • PDF

Design of an Active Current Regulator for LED Driver IC (LED 구동 IC를 위한 능동 전류 조절기의 설계)

  • Yun, Seong-Jin;Oh, Tak-Jun;Jo, A-Ra;Ki, Seok-Lip;Hwang, In-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.612-616
    • /
    • 2012
  • This paper presents an active current regulator for LED driver IC. The proposed driver circuit is consists of DC-DC converter for supplying constant DC voltage to LED, active current regulator for compensating channel-to-channel current error from LED strings and feedback circuit for controlling duty ratio of the converter. The proposed active current regulator senses current of LED channels by equalizing both $V_{DS}$ and $V_{GS}$ at LED current control transistor. Because the proposed circuit directly measures the LED channel current without a sensing resistor and regulates all channel with same regulation loop, the power consumption and the current error are much small compared with previous works. The measured maximum efficiency of overall LED driver IC is approximately 94% and current error of LED channel-to-channel is under ${\pm}1.3%$. The proposed LED driver IC is fabricated Dongbu 0.35um BCD process.

A Study on the Modeling and Simulation of LED Driver Using HV9910 IC (HV9910 IC를 사용한 LED driver 모델링 및 시뮬레이션에 관한 연구)

  • Han, Soo-Bin;Park, Suck-In;Jeong, Hak-Geun;Chae, Su-Yong;Song, Eu-Gine;Jung, Bong-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.4
    • /
    • pp.14-21
    • /
    • 2012
  • This paper study a method of modeling and simulation of LED driver circuit for a design optimization. Simplified LED modeling is introduced and a driver IC, HV9910, is modeled by implementing the major function blocks. Circuit of buck type converter is constructed for simulation. Simulation includes not only the internal function of IC but also the various performance results such as LED array current control and dimming. Experiment results are also shown to prove the verification of its usage. This results show that the simulation approach is valid for a circuit optimization and a reduction of development time.

A study on AC-powered LED driver IC (교류 구동 LED 드라이버 IC에 관한 연구)

  • Jeon, Eui-Seok;An, Ho-Myoung;Kim, Byungcheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.4
    • /
    • pp.275-283
    • /
    • 2021
  • In this study, a driver IC for an AC-powered LED that can be manufactured with a low voltage semiconductor process is designed and the performances of the driver IC were simulated. In order to manufacture a driver IC that operates directly at AC 220V, a semiconductor manufacturing process that satisfies a breakdown voltage of 500V or higher is required. A semiconductor manufacturing process for a high-voltage device requires a much higher manufacturing cost than a general semiconductor process for a low-voltage device. Therefore, the LED driver IC is designed in series so that it can be manufactured with semiconductor process technology that implements a low-voltage device. This makes it possible to divide and apply the voltage to each LED block even if the input voltage is high. The LED lighting circuit shows a power factor of 96% at 220V. In the pnp transistor circuit, a very high power factor of 99.7% can be obtained, and it shows a very stable operation regardless of the fluctuation of the input voltage.

Functional verification method of OLED driver IC using PLI (PLI를 이용한 OLED 드라이버 IC의 기능 검증 방법)

  • Kim, Jung-Hak;Kim, Seok-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.6 s.360
    • /
    • pp.83-88
    • /
    • 2007
  • In this paper, we propose the function verification method of the OLED(Organic Light Emitting Diode) drive IC using PLI verification method. This method uses the HDL(Hardware Description Language) simulator, PLI(Programing Language Interface), and GUI (Graphic User Interface) image viewer. This method improves the execute efficiency 40 times than conventional function verification methods. The proposed method can be used efficiently for function verification of DDI(display driver IC) design step.

High Voltage Driver IC for LCD/PDP TV Power Supply (LCD/PDP TV 전원장치용 고전압 구동 IC)

  • Song, Ki-Nam;Lee, Yong-An;Kim, Hyoung-Woo;Kim, Ki-Hyun;Seo, Kil-Soo;Han, Seok-Bung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.11-12
    • /
    • 2009
  • In this paper, we propose a high voltage driver IC(HVIC) for LCD and PDP TV power supply. The proposed circuit is included novel a shoot-through protection and a pulse generation circuit for the high voltage driver IC. The proposed circuit has lower variation of dead time and pulse-width about a variation of a process and a supply voltage than a conventional circuit. Especially, the proposed circuit has more excellent pulse-width matching of set and reset signals than the conventional circuit. Also the proposed pulse generation circuit prevent from fault operations using a logic gate. Dead time and pulse-width of the proposed circuit are typical 250 ns, and its variation is maximum 170 ns(68 %) about a variation of a process and a supply voltage. The proposed circuit is designed using $1\;{\mu}m$ 650 V BCD process parameter, and a simulation is carried out using Spectre.

  • PDF

A Research of Power-Efficient Driving Scheme for Auto-Focus on Image Sensor Module (이미지 센서 모듈을 위한 자동-초점 기능의 전력-효율적인 구동 방법에 대한 연구)

  • Cha, Sang-Hyun;Park, Chan-Woo;Lee, Yuen-Joong;Hwang, Byoung-Won;Kwon, Oh-Jo;Park, Deuk-Hee;Kwon, Kyoung-Soo;Lee, Jae-Shin;Hwang, Shin-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1197-1202
    • /
    • 2009
  • We present a power-efficient driving scheme that consists of piezoelectric actuator and driver IC for AF (Auto-Focus) on ISM (Image Sensor Module). The piezoelectric actuator is more power-efficient than conventional voice coil motor actuator. And high power-efficiency driver IC is designed. So the proposed driving scheme using designed piezoelectric actuator and driver IC is more close to recent trend of green IT. The diver IC should guarantee fast and accurate performance. So, the optimum driving method and high accurate frequency synthesizer are proposed. The die area of designed driver IC is $2.0{\times}1.6mm^2$ and power consumption is 2.8mW.

A Study of White-LED Driver IC for Mobile Applications (모바일용 White-LED Driver IC에 관한 연구)

  • Ko, Young-Seok;Park, Shi-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.7
    • /
    • pp.572-575
    • /
    • 2009
  • In this study, we proposed WLED(White-Light Emitting Diode) driver IC for mobile applications. This IC drove WLED for mobile applications with low input voltage and high efficiency by using boost converter. The device was designed by using boost converter applied current-mode control algorithm and provided PWM(Pulse Width Modulation) & analog dimming. Designed IC consisted of bias block, drive block, control block, protection block. We confirmed this device worked well through a application PCB (Printed Circuit Board) test.

LCD Driver IC Assembly Technologies & Status

  • Shen, Geng-shin
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.09a
    • /
    • pp.21-30
    • /
    • 2002
  • According the difference of flex substrate, (reel tape), there are three kind assembly types of LCD driver IC is COG, TCP and COF, respectively. The TCP is the maturest in these types for stability of raw material supply and other specification. And TCP is the major assembly type of LCD driver IC and the huge demand from Taiwan's large TFT LCD panel house since this spring. But due to its package structure and the raw material applied in this package, there is some limitation in fine pitch application of this package type, (TCP). So, COF will be very potential in compact and portable application comparison with TCP in the future. There are three kinds assembly methods in COF, one is ACF by using the anisotropic conductive film to connect the copper lead of tape and gold bump of IC, another is eutectic bonding by using the thermo-pressure to joint the copper lead of tape and gold bump of IC, and last is NCP by using non-conductive paste to adhere the copper lead of tape and gold bump of IC. To have a global realization, this paper will briefly review the status of Taiwan's large TFT panel house, the internal driver IC design house, and the back-end assembly house in the beginning. The different material property of raw material, PI tape is also compared in the paper. The more detail of three kinds of COF assembly method will be described and compared in this paper.

  • PDF

Design of a Robust Half-bridge Driver IC to a Variation of Process and Power Supply (공정 및 공급전압 변화에 강인한 하프브리지 구동 IC의 설계)

  • Song, Ki-Nam;Kim, Hyoung-Woo;Kim, Ki-Hyun;Seo, Kil-Soo;Jang, Kyung-Oun;Han, Seok-Bung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.801-807
    • /
    • 2009
  • In this paper, we propose a novel shoot-through protection circuit and pulse generator for half-bridge driver IC. We designed a robust half-bridge driver IC over a variation of processes and power supplies. The proposed circuit is composed a delay circuit using a beta-multiplier reference. The proposed circuit has a lower variation rate of dead time and pulse-width over variation of processes and supply voltages than the conventional circuit. Especially, the proposed circuit has more excellent pulse-width matching of set and reset signals than the conventional circuit. Also, the proposed pulse generator is prevented from fault operations using a logic gate. Dead time and pulse-width of the proposed circuit are typical 250 ns, respectively. The variation ratio is 68%(170 ns) of maximum over variation of processes and supply voltages. The proposed circuit is designed using $1\;{\mu}m$ 650 V BCD (Bipolar, CMOS, DMOS) process parameter, and the simulations are carried out using Spectre simulator of Cadence corporation.