• Title/Summary/Keyword: Driver Authentication

Search Result 22, Processing Time 0.024 seconds

Suggestion of Secure Driver Authentication and Vehicle Control System based on NFC Communication and Biometric Information (보안성을 갖춘 NFC 통신 및 생체정보 기반의 운전자 인증 및 차량 제어 시스템 제안)

  • Park, Tae-hwan;Seo, Hwa-joeng;Lim, Ji-hwan;Kim, Ho-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.700-707
    • /
    • 2018
  • Vehicles are used in daily life as convenient transport, it is important to authenticate driver because vehicles are controlled by driver. Especially, in these days, there is a discussion on introduction of Driving Under the Influence car-starting locking device installation for preventing accidents caused by Driving Under the Influence of alcohol, these car-starting locking device installation requires a lot of money and time. Suitable user authentication for solving user's inconvenience during the disabled and men of national merit to receive discount benefits is needed. In this paper, For solving these problems, we propose the efficient vehicle control and user authentication system for preventing driving under the influence and providing the disabled and men of national merit benefit based on driver authentication by using user's smartphone NFC communication and user's biometric information.

The Sub Authentication Method For Driver Using Driving Patterns (운전 패턴을 이용한 운전자 보조 인증방법)

  • Jeong, Jong-Myoung;Kang, Hyung Chul;Jo, Hyo Jin;Yoon, Ji Won;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.5
    • /
    • pp.919-929
    • /
    • 2013
  • Recently, a variety of IT technologies are applied to the vehicle. However, some vehicle-IT technologies without security considerations may cause security problems. Specially, some researches about a smart key system applied to automobiles for authentication show that the system is insecure from replay attacks and modification attacks using a wireless signal of the smart key. Thus, in this paper, we propose an authentication method for the driver by using driving patterns. Nowadays, we can obtain driving patterns using the In-vehicle network data. In our authentication model, we make driving ppatterns of car owner using standard normal distribution and apply these patterns to driver authentication. To validate our model, we perform an k-fold cross validation test using In-vehicle network data and obtain the result(true positive rate 0.7/false positive rate is 0.35). Considering to our result, it turns out that our model is more secure than existing 'what you have' authentication models such as the smart key if the authentication result is sent to the car owner through mobile networks.

An Authentication Scheme for Emergency Vehicle Priority Transit Service in VANET (VANET 기반의 긴급 차량 우선통과 서비스를 위한 인증 기법)

  • Yoon, Young-Kyun;Jung, Sou-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10C
    • /
    • pp.749-757
    • /
    • 2008
  • In this paper, we propose an authentication scheme for EVPT (Emergency Vehicle Priority Transit) service in Vehiclar Ad-hoc Networks (VANET) enable a variety of vehicle comfort services, traffic management applications, and infotainment services. These are the basis for a new generation of preventive and active safety functions. By intelligently controlling signalling at intersections, providing additional information to the driver and warning the driver in critical situations. we therefore focus on vehicle-to-infrastructure communication for the authentication between emergency vehicles and traffic lights system. This authentication process should identify the vehicle, and provide privacy protection.

The Mutual Authentication and Operation Methodology for an Enhanced Security and Operation of the IDL (국제통용운전면허증의 보안성과 운용성 강화를 위한 상호인증 및 운용 기법에 관한연구)

  • Jeon, Sang-Hoon;Jun, Moon-Suk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2B
    • /
    • pp.188-202
    • /
    • 2009
  • In the modern world, where the number of people moving from country to country is sharply increasing, domestic and international driver's licenses are easily fabricated or forged, and distinguishing if a driver's license is legitimate or not is often a difficult task. Furthermore, this would require different countries to mutually share and administer the driving records of individuals, making it a much more complex task (Added to it is the complicated matter of countries having to mutually share and administer the driving records of individuals.) However, the authenticity and security of a driver's license has become the first priority since driver's licenses are also used as identification cards in most countries, thus requiring measures to prevent inappropriate uses arising from theft and embezzlement. In this paper, we propose the mutual authentication mechanism which, can provide enhanced security and efficient operation that is administration of personal information contained within ISO Compliant Driving licence(IDL).

An Efficient Authentication Protocol for GPS Information Exchange between Cars Using the Base Station (기지국을 이용한 차량간 GPS 정보 교환을 위한 효율적인 인증 프로토콜)

  • Cho, KookRae;Son, Jong-Wuk;Cho, HuiSup
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.3
    • /
    • pp.118-127
    • /
    • 2010
  • Inter-vehicle communication is one of the most important parts in Intelligent Vehicle System. Through this communication, drivers can recognize what is happening out of their sights, such as the freezing condition of the street, traffic accidents, and so on. Each car in IVS gives various services to the drivers after analyzing those received information from cars or a base station. If the message is, however, exchanged from car to car directly, the computation cost which is needed for all the car to authenticate the transmitted message between nearby cars is tremendously high. Therefore, one can naturally think that the message communication between cars is performed with the help of the base station to reduce the computation cost. In this case where the base station collects all the information transmitted from cars and broadcasts them nearby, there should be an efficient way both for the base station to authenticate the car message within its communication range and for the car to authenticate the information received from the base station. In this paper, we present a two-way authentication protocol using a hash chain to efficiently exchange GPS information between a car and a base station. This information can be used to provide a driver with the navigation which displays all the moving cars around him in real time. When a car goes into an area of a base station, the car authenticates itself to the base station using its private key of PKI, sends a commitment of a hash chain, then starts to send a message with the hash value for authentication. The message includes GPS information, driver's status and so on. The base station also authenticates itself to the nearby cars using its private key, transmits the commitment of the hash chain, and sends all the messages gathered from cars with authentication information.

Pseudonym Management in Autonomous Driving Environment (자율주행환경에서 가명성 관리)

  • Hong, Jin Keun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.10
    • /
    • pp.29-35
    • /
    • 2017
  • In this paper, we describe certificate policy and characteristics in cooperation condition with Cooperative intelligent transport system and autonomous driving vehicle. Among the authentication functions of the vehicle, there is a pseudonym authentication function. This pseudonymity is provided for the purpose of protecting the privacy of information that identifies the vehicle driver, passenger or vehicle. Therefore, the purpose of the pseudonym certificate is to be used for reporting on BSM authentication or misbehavior. However, this pseudonym certificate is used in the OBE of the vehicle and does not have a cryptographic key. In this paper, we consider a method for managing a pseudonym authentication function, which is a key feature of the pseudonym certificate, such as location privacy protection, pseudonym function, disposition of linkage value or CRL, request shuffling processing by registry, butterfly key processing, The authentication policy and its characteristics are examined in detail. In connection with the management of pseudonymes of the vehicle, the attacker must record the BSM transmission and trace the driver or vehicle. In this respect, the results of this study are contributing.

A PERFORMANCE IMPROVEMENT OF ANEL SCHEME THROUGH MESSAGE MAPPING AND ELLIPTIC CURVE CRYPTOGRAPHY

  • Benyamina Ahmed;Benyamina Zakarya
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.169-176
    • /
    • 2023
  • The vehicular ad hoc network (VANET) is currently an important approach to improve personal safety and driving comfort. ANEL is a MAC-based authentication scheme that offers all the advantages of MAC-based authentication schemes and overcomes all their limitations at the same time. In addition, the given scheme, ANEL, can achieve the security objectives such as authentication, privacy preservation, non-repudiation, etc. In addition, our scheme provides effective bio-password login, system key update, bio-password update, and other security services. Additionally, in the proposed scheme, the Trusted Authority (TA) can disclose the source driver and vehicle of each malicious message. The heavy traffic congestion increases the number of messages transmitted, some of which need to be secretly transmitted between vehicles. Therefore, ANEL requires lightweight mechanisms to overcome security challenges. To ensure security in our ANEL scheme we can use cryptographic techniques such as elliptic curve technique, session key technique, shared key technique and message authentication code technique. This article proposes a new efficient and light authentication scheme (ANEL) which consists in the protection of texts transmitted between vehicles in order not to allow a third party to know the context of the information. A detail of the mapping from text passing to elliptic curve cryptography (ECC) to the inverse mapping operation is covered in detail. Finally, an example of application of the proposed steps with an illustration

Development of wearable device with smart key function and convergence of personal bio-certification and technology using ECG signal (심전도 신호를 이용한 개인 바이오인증 기술 융합과 smart key 기능이 탑재된 wearable device 개발)

  • Bang, Gul-Won
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.637-642
    • /
    • 2022
  • Self-authentication technology using electrocardiogram (ECG) signals is drawing attention as a self-authentication technology that can replace existing bio-authentication. A device that recognizes a digital electronic key can be mounted on a vehicle to wirelessly exchange data with a car, and a function that can lock or unlock a car door or start a car by using a smartphone can be controlled through a smartphone. However, smart keys are vulnerable to security, so smart keys applied with bio-authentication technology were studied to solve this problem and provide driver convenience. A personal authentication algorithm using electrocardiogram was mounted on a watch-type wearable device to authenticate bio, and when personal authentication was completed, it could function as a smart key of a car. The certification rate was 95 per cent achieved. Drivers do not need to have a smart key, and they propose a smart key as an alternative that can safely protect it from loss and hacking. Smart keys using personal authentication technology using electrocardiogram can be applied to various fields through personal authentication and will study methods that can be applied to identification devices using electrocardiogram in the future.

Vehicle Start Control System using Facial Recognition Technology (안면인식 기술을 활용한 차량 시동 제어 시스템)

  • Lee, Min-hye;Kang, Sun-kyoung;Shin, Seong-yoon;Lim, Soon-ja
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.425-426
    • /
    • 2021
  • Recently, there have been frequent incidents of talent accidents caused by youth driving without a license. Driving without a license is becoming a hotbed of curiosity and challenge for some young people, and there is a limit to managing smart keys at home to prevent this. Therefore, in this paper, using the facial recognition algorithm, the face of the driver sitting in the driver's seat is compared with the information stored in advance, and the system is designed to control the engine by determining that it is a registered driver. If the registered driver authentication is successful, the matching accuracy and Unlock message are output to the LCD connected to the Raspberry Pi.

  • PDF

A Study on the Certification System in Electromic Commerce (전자상거래(電子商去來)의 인증체계(認證體系)에 관한 고찰(考察))

  • Ha, Kang Hun
    • Journal of Arbitration Studies
    • /
    • v.9 no.1
    • /
    • pp.367-390
    • /
    • 1999
  • The basic requirements for conducting electronic commerce include confidentiality, integrity, authentication and authorization. Cryptographic algorithms, make possible use of powerful authentication and encryption methods. Cryptographic techniques offer essential types of services for electronic commerce : authentication, non-repudiation. The oldest form of key-based cryptography is called secret-key or symmetric encryption. Public-key systems offer some advantages. The public key pair can be rapidly distributed. We don't have to send a copy of your public key to all the respondents. Fast cryptographic algorithms for generating message digests are known as one-way hash function. In order to use public-key cryptography, we need to generate a public key and a private key. We could use e-mail to send public key to all the correspondents. A better, trusted way of distributing public keys is to use a certification authority. A certification authority will accept our public key, along with some proof of identity, and serve as a repository of digital certificates. The digital certificate acts like an electronic driver's license. The Korea government is trying to set up the Public Key Infrastructure for certificate authorities. Both governments and the international business community must involve archiving keys with trusted third parties within a key management infrastructure. The archived keys would be managed, secured by governments under due process of law and strict accountability. It is important that all the nations continue efforts to develop an escrowed key in frastructure based on voluntary use and international standards and agreements.

  • PDF