• Title/Summary/Keyword: Driver Assistance

Search Result 228, Processing Time 0.027 seconds

Novel Backprojection Method for Monocular Head Pose Estimation

  • Ju, Kun;Shin, Bok-Suk;Klette, Reinhard
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.50-58
    • /
    • 2013
  • Estimating a driver's head pose is an important task in driver-assistance systems because it can provide information about where a driver is looking, thereby giving useful cues about the status of the driver (i.e., paying proper attention, fatigued, etc.). This study proposes a system for estimating the head pose using monocular images, which includes a novel use of backprojection. The system can use a single image to estimate a driver's head pose at a particular time stamp, or an image sequence to support the analysis of a driver's status. Using our proposed system, we compared two previous pose estimation approaches. We introduced an approach for providing ground-truth reference data using a mannequin model. Our experimental results demonstrate that the proposed system provides relatively accurate estimations of the yaw, tilt, and roll angle. The results also show that one of the pose estimation approaches (perspective-n-point, PnP) provided a consistently better estimate compared to the other (pose from orthography and scaling with iterations, POSIT) using our proposed system.

Study on Fatality Risk of Older Driver and Traffic Accident Cost (고령운전자 연령구간별 사망사고 발생위험도와 사고비용 분석 연구)

  • Choi, Jaesung
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.111-118
    • /
    • 2018
  • Korea is facing a surge in the aging population, showing that population aged 65 and above will be accounted for 42.5% of the total population in 2065 with the emphasis on the over-80 population consisting of 19.2%. In response to this abrupt change in population structure, the number of traffic fatality accident referring to older driver as aged 65+ years had been increasing from 605 fatalities in 2011 to 815 fatalities in 2015 resulting in increases in 34.7% in oppose to happening to decreases in 17.2% about non-older driver. With Logit analysis based on Newton-Raphson algorithm utilizing older driver's traffic fatality data for the 2011-2015 years, it was found that the likelihood of an accident resulting in a fatality for super older driver aged 80 years and above considerably increased compared to other older driver with aging classification: 2.24 times for violation of traffic lane, 2.04 times for violation of U-turn, 1.48 times for violation of safety distance, 1.35 times for violation of obstacle of passing; also average annual increase of traffic accident cost related to super older driver was fairly increased rather than other older driver groups. Hence, this study proposes that improving and amending transport safety system and Road Traffic Act for super older driver needs to be urgently in action about license management, safe driving education, etc. when considering the increase of over-80 population in the near future. Also, implementing a social agreement with all ages and social groups to apply with advanced driver assistance system for older driver groups will be able to become a critical factor to enhance safe driving over the face of the country.

STOP AND GO CRUISE CONTROL

  • Venhovens, P.;Naab, K.;Adiprasito. B.
    • International Journal of Automotive Technology
    • /
    • v.1 no.2
    • /
    • pp.61-69
    • /
    • 2000
  • This paper will address the basic requirements for realizing a stop and go cruise control system. Issues discussed comprise: functional, sensor and basic HMI requirements, primary characterization of naturalistic stop & go driving, and the basic approach of the transformation of situational knowledge in an elementary controller.

  • PDF

Standardization Status and Future Procedure of ISO/TC204/WG14 ′Vehicle/Roadway Warning and Control Systems′

  • Kiichi Yamada;Kosaka, Eliko-Monica
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.26 no.4
    • /
    • pp.26-31
    • /
    • 2004
  • ISO/TC204/WG14 is an International Leader in the Development and Production of Intelligent Transport Systems (ITS). WGl4, in Which Japan Serves as Chairman Country, is Responsible for the Standardization of Driver Assistance Systems (Vehicle/Roadway Warning and Control Systems). (omitted)

  • PDF

Development of Vehicle Environment for Real-time Driving Behavior Monitoring System (실시간 운전 특성 모니터링 시스템을 위한 차량 환경 개발)

  • Kim, Man-Ho;Son, Joon-Woo;Lee, Yong-Tae;Shin, Sung-Heon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • There has been recent interest in intelligent vehicle technologies, such as advanced driver assistance systems (ADASs) or in-vehicle information systems (IVISs) that offer a significant enhancement of safety and convenience to drivers and passengers. However, unsuitable design of HMI (Human Machine Interface) must increase driver distraction and workload, which in turn increase the chance of traffic accidents. Distraction in particular often occurs under a heavy driving workload due to multitasking with various electronic devices like a cell phone or a navigation system while driving. According to the 2005 road traffic accidents in Korea report published by the ROad Traffic Authority (ROTA), more than 60% of the traffic accidents are related to driver error caused by distraction. This paper suggests the structure of vehicle environment for real-time driving behavior monitoring system while driving which is can be used the driver workload management systems (DWMS). On-road experiment results showed the feasibility of the suggested vehicle environment for driving behavior monitoring system.

Driver's Behavioral Pattern in Driver Assistance System (운전자 사용자경험기반의 인지향상 시스템 연구)

  • Jo, Doori;Shin, Donghee
    • Journal of Digital Contents Society
    • /
    • v.15 no.5
    • /
    • pp.579-586
    • /
    • 2014
  • This paper analyzes the recognition of driver's behavior in lane change using context-free grammar. In contrast to conventional pattern recognition techniques, context-free grammars are capable of describing features effectively that are not easily represented by finite symbols. Instead of coordinate data processing that should handle features in multiple concurrent events respectively, effective syntactic analysis was applied for patterning of symbolic sequence. The findings proposed the effective and intuitive method for drivers and researchers in driving safety field. Probabilistic parsing for the improving this research will be the future work to achieve a robust recognition.

A Study of Head Up Display System for Next Generation Vehicle (차세대 자동차 통합스마트 모니터 시스템에 관한 연구)

  • Yun, Sung-Ha;Son, Hui-Bae;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.3
    • /
    • pp.439-444
    • /
    • 2011
  • In this paper, we implemented the intelligent smart monitor system for next generation which is most commonly viewed information in a vehicle from the instrument cluster, where speed, tachometer, fuel, engine temperature, fuel gauge, turn indicators and warning lights and provide the driver with an array of informations. Designed Smart HUD(Head-Up-Display) monitor system is composed TFT LCD, LCD Back light led, plane mirror, lens and controllers parts and it was assembled to intelligent integrated smart monitor system. Finally, we analyze intelligent integrated smart monitor system for driver safety vehicles and present the possibility to apply to smart intelligent HUD total monitor system for next generation.

Neighboring Vehicle Maneuver Detection using IMM Algorithm for ADAS (지능형 운전보조시스템을 위한 IMM 기법을 이용한 전방차량 거동추정기법)

  • Jung, Sun-Hwi;Lee, Woon-Sung;Kang, Yeonsik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.718-724
    • /
    • 2013
  • In today's automotive industry, there exist several systems that help drivers reduce the possibility of accidents, such as the ADAS (Advanced Driver Assistance System). The ADAS helps drivers make correct and quick decisions during dangerous situations. This study analyzed the performance of the IMM (Interacting Multiple Model) method based on multiple Kalman filters using the data acquired from a driving simulator. An IMM algorithm is developed to identify the current discrete state of neighboring vehicles using the sensor data and the vehicle dynamics. In particular, the driving modes of the neighboring vehicles are classified by the cruising and maneuvering modes, and the transition between the states is modeled using a Markovian switching coefficient. The performance of the IMM algorithm is analyzed through realistic simulations where a target vehicle executes sudden lane change or acceleration maneuver.

Realtime Robust Curved Lane Detection Algorithm using Gaussian Mixture Model (가우시안 혼합모델을 이용한 강인한 실시간 곡선차선 검출 알고리즘)

  • Jang, Chanhee;Lee, Sunju;Choi, Changbeom;Kim, Young-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • ADAS (Advanced Driver Assistance Systems) requires not only real-time robust lane detection, both straight and curved, but also predicting upcoming steering direction by detecting the curvature of lanes. In this paper, a curvature lane detection algorithm is proposed to enhance the accuracy and detection rate based on using inverse perspective images and Gaussian Mixture Model (GMM) to segment the lanes from the background under various illumination condition. To increase the speed and accuracy of the lane detection, this paper used template matching, RANSAC and proposed post processing method. Through experiments, it is validated that the proposed algorithm can detect both straight and curved lanes as well as predicting the upcoming direction with 92.95% of detection accuracy and 50fps speed.

Night-time Vehicle Detection Based On Multi-class SVM (다중-클래스 SVM 기반 야간 차량 검출)

  • Lim, Hyojin;Lee, Heeyong;Park, Ju H.;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.5
    • /
    • pp.325-333
    • /
    • 2015
  • Vision based night-time vehicle detection has been an emerging research field in various advanced driver assistance systems(ADAS) and automotive vehicle as well as automatic head-lamp control. In this paper, we propose night-time vehicle detection method based on multi-class support vector machine(SVM) that consists of thresholding, labeling, feature extraction, and multi-class SVM. Vehicle light candidate blobs are extracted by local mean based thresholding following by labeling process. Seven geometric and stochastic features are extracted from each candidate through the feature extraction step. Each candidate blob is classified into vehicle light or not by multi-class SVM. Four different multi-class SVM including one-against-all(OAA), one-against-one(OAO), top-down tree structured and bottom-up tree structured SVM classifiers are implemented and evaluated in terms of vehicle detection performances. Through the simulations tested on road video sequences, we prove that top-down tree structured and bottom-up tree structured SVM have relatively better performances than the others.