• Title/Summary/Keyword: Driven open-ended pipe pile

Search Result 17, Processing Time 0.02 seconds

A Study on the Vertical Bearing Capacity of Batter Piles Subjected to Vertical Load (연직하중을 받는 경사말뚝의 연직지지력에 관한 연구)

  • 성인출;이민희;최용규;권오균
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.49-55
    • /
    • 2003
  • In this study, based on the relationship of the vertical force - settlement of batter piles obtained by pressure chamber model tests, the vertical bearing capacity of vertical and batter piles according to the increase of pile inclination was analyzed. A model open - ended steel pipe pile with the inclination of 5$^\circ$, 10$^\circ$ and 15$^\circ$ was driven into saturated fine sand with relative density of 50 %, and the static compression load tests were performed under each confining pressure of 35, 70 and 120 kPa in pressure chamber. The vertical bearing capacity of pile obtained from pressure chamber tests increased with the pile inclination. In the case of the inclination of 5$^\circ$, 10$^\circ$, 15$^\circ$, increasing ratios of pile bearing capacity were 111, 121, 127 ~ 140 % of vertical bearing capacity respectively. In the case of the inclination of above 20$^\circ$, the model tests could not be performed because of pile of pile head during compressive loading on the pile head.

A Case Study of large diameter steel pipe pile Foundation for Offshore LNG Facility (해상 LNG 인수시설 대구경 강관말뚝 시공 사례 연구)

  • You, Dae-Young;Kim, Hyung-Wook;Jang, Woo-Young;Choi, Ki-Byung;Cho, Sung-Han
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.70-77
    • /
    • 2010
  • In this paper, a case study of drivability and bearing capacity of large diameter steel pipe piles at PTT LNG site in Thailand is introduced. The LNG facilities were designed to be founded on steel pipe pile foundations driven into the weathered rock formation overlaid by sand layers. The drivability analyses of open ended pipe piles were carried out using GRL WEAP program and the bearing capacities of the piles were estimated. Dynamic load tests were performed to evaluate end bearing resistance, and it is shown that the measured end bearing resistance is smaller than the calculated end bearing because the plugging does not develop sufficiently in case of large diameter pipe piles.

  • PDF

Drivability Monitoring of Large Diameter Underwater Steel Pipe Pile Using Pile Driving Analyzer. (수중 대구경강관말뚝의 항타관입성 모니터링을 위한 PDA 적용 사례)

  • Kim, Dae-Hak;Park, Min-Chul;Kang, Hyung-Sun;Lee, Won-Je
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.11-19
    • /
    • 2004
  • When pile foundation constructed by driving method, it is desirable to perform monitoring and estimation of pile drivability and bearing capacity using some suitable tools. Dynamic Pile Monitoring yields information regarding the hammer, driving system, and pile and soil behaviour that can be used to confirm the assumptions of wave equation analysis. Dynamic Pile Monitoring is performed with the Pile Driving Analyser. The Pile Driving Analyser (PDA) uses wave propagation theory to compute numerous variables that fully describe the condition of the hammer-pile-soil system in real time, following each hammer impact. This approach allows immediate field verification of hammer performance, driving efficiency, and an estimate of pile capacity. The PDA has been used widely as a most effective control method of pile installations. A set of PDA test was performed at the site of Donghea-1 Gas Platform Jacket which is located east of Ulsan. The drilling core sediments of location of jacket subsoil are composed of mud and sand, silt. In this case study, the results of PDA test which was applied to measurement and estimation of large diameter open ended steel pipe pile driven by underwater hydraulic hammer, MHU-800S, at the marine sediments were summarized.

  • PDF

Drivability of Offshore Pile Foundation at Ieodo Ocean Research Station (이어도 해양과학기지 말뚝기초의 항타 관입성 연구)

  • Shim, Jae-Seol;Yoon, Gil-Lim;Lee, Seung-Jun
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.373-384
    • /
    • 2003
  • When pile foundation is constructed by dynamic method, it is desirable to perform monitoring of drivability with pile penetration. Dynamic pile monitoring yields information regarding driving hammer, cushion, pile and soil behaviour that can be used to confirm the assumptions of wave equation analysis. In this study, dynamic monitoring of the steel pipe pile was performed with Pile Driving Analyser (PDA). The PDA utilizes the wave propagation theory to compute numerous variables which describe the conditions of the hammer-pile-soil system in real-time and following each hammer impact. This approach allows immediate field verification of hammer performance, driving efficiency, and estimation of pile bearing capacity. A series of PDA test were performed at the Ieodo Ocean Research Station (IORS) located in southeast of Marado, a southernmost small island south of Jeju Island. The drilling core sediments of Ieodo subsoil are composed of mud and sand, showing lamination and wavy or lenticular bedding, which were often bioturbated. This paper summarizes the results of PDA tests which were applied in measurement and estimation of large diameter open ended steel pipe pile driven by steam hammer, Vulcan-560 and MRBS-4600, at the marine sediments.

Characteristics on the Vertical Load Capacity Degradation for Impact driven Open-ended Piles During Simulated Earthquake /sinusoidal Shaking, (타격관입 개단말뚝의 동적진동에 의한 압축지지력 저감특성)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.51-64
    • /
    • 1996
  • After the model open-ended pile attached with strain gages was driven into a pressure chamber, in which the saturated microfine sand was contained, the static compression loading test was performed for that pile. Based on the test results, ultimate pile capacity was determined. Then, either simulated earthquake shaking or sinusoidal shaking was applied to the pile with the sustained certain level OP ultimate pile load. Then, pile capacity degradations characteristics during shaking were studied. Pile capacity degradation during two different shakings were greatly different. During the simulated earthquake shaking, capacity degradation depended upon the magnitude of applied load. When the load applied to the pile top was less than 70% of ultimate pile capacidy, pile capacity degradation rate was less than 8%, and pile with the sustained ultimate pile load had the degradation rate of 90%. Also, most of pile capacity degradation was reduced in outer skin friction and degradation rate was about 80% of ultimate pile capacity reduction. During sinusoidal shaking, pile capacity degradation did not depend on the magnitude of applied load. It depended on the amplitude and the frequency , the larger the amplitude and the fewer the frequency was, the higher the degradation rate was. Reduction pattern of unit soil plugging (once depended on the mode of shaking. Unit soil plugging force by the simulated earthquake shaking was reduced in the bottom 3.0 D, of the toe irrespective of the applied load, while reduction of unit soil plugging force by sinusoidal shaking was occurred in the bottom 1.0-3.0D, of the toe. Also, the soil plugging force was reduced more than that during simulated earthquake shaking and degradation rate of the pile capacity depended on the magnitude of the applied load.

  • PDF

A Study on the 3D Analysis of Driven Pile Penetration Based on Large Deformation Technique (Coupled Eulerian-Lagrangian) (대변형 해석기법(Coupled Eulerian-Lagrangian)을 이용한 항타 관입성 모사의 3차원 해석)

  • Ko, Jun-Young;Jeong, Sang-Seom;Lee, Seung-Yeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.8
    • /
    • pp.29-38
    • /
    • 2015
  • This paper presents the application of the Coupled Eulerian-Lagrangian (CEL) numerical technique to simulate the driving of open-ended piles into sandy soil. The main objective of this study was to investigate the applicability of CEL technique to the behavior of the driven pile penetration. Comprehensive studies to verify the behavior of driven pile penetration are presented in this paper. Through comparison with results of field load tests, the CEL methodology was found to be in good agreement with the general trend observed by in situ measurement, and the CEL approach accurately simulated the behavior of driven pipe piles.

Dynamic Behavior of Large Diameter steel Pipe Piles during driving (대구경 강관말뚝의 항타시 동적 거동)

  • 이영남;이종섭
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.141-148
    • /
    • 2000
  • For the construction of 4.8km long Multi-Purpose Jamuna Bridge in Bangladesh, 2 or 3 large diameter open-ended steel pipe piles were used for the foundation of piers. A total of 123 piles were driven for 50 piers and 2 test piles from the river bed through the normally-consolidated upper sand layer and rested n top of gravel layer. Two types of piles, having 3.15 or 2.50m diameter and variable wall thickness in the range of 40 to 60mm, were driven to the depths of 69 to 74m with the rake of 6:1 by connecting 2 or 3 pieces of short piles. Dynamic pile tests were performed on 24 selected piles during pile driving and soil plug length inside the pile was also measured after driving of each short section.These piles were plugged with soil to, though slightly affected by pile diameters, about 75% of total length of pile driven. Active plug at the tip of pile contributed substantial amount of inner skin friction to the total capacity. Piles soon after driving showed a skin-friction dominant pile behaviour, tat is, 90% of total capacity being developed by skin resistance. Quakes values and Smith damping factors were almost constant regardless of pile diameters. This result reflects the influence of uniform soil condition at the site.

  • PDF