• 제목/요약/키워드: Drilling processing

검색결과 103건 처리시간 0.083초

변형률 속도 효과를 고려한 355 nm UV 레이저 구리재질의 싱글 펄스 전산해석 (Computational Analysis of 355 nm UV Laser Single-Pulsed Machining of Copper Material Considering the Strain Rate Effect)

  • 이정한;오재용;박상후;신보성
    • 한국기계가공학회지
    • /
    • 제9권3호
    • /
    • pp.56-61
    • /
    • 2010
  • Recently, UV pulse laser is widely used in micro machining of the research, development and industry field of IT, NT and BT products because the laser short wavelength provides not only micro drilling, micro cutting and micro grooving which has a very fine line width, but also high absorption coefficient which allows a lot of type of materials to be machined more easily. To analyze the dynamic deformation during a very short processing time, which is nearly about several tens nanoseconds, the commercial Finite Element Analysis (FEA) code, LS-DYNA 3D, was employed for the computitional simulation of the UV laser micro machining behavior for thin copper material in this paper. A finite element model considering high strain rate effect is especially suggested to investigate the micro phenomena which are only dominated by mechanically pressure impact in disregard of thermally heat transfer. From these computational results, some of dynamic deformation behaviors such as dent deformation shapes, strains and stresses distributions were observed and compared with previous experimental works. These will help us to understand micro interaction between UV laser beam and material.

가공력 제어 위치 서보 시스템을 이용한 초음파 가공기의 개발 (Development of Ultrasonic Machine with Force Controlled Position Servo System)

  • 장인배;이승범;전병희
    • 소성∙가공
    • /
    • 제13권3호
    • /
    • pp.253-261
    • /
    • 2004
  • The machining technology for the brittle materials such as ceramics are applied to the fields of MEMS(micro electromechanical system) by the progress of new machining technologies such as Etching, Diamond machining, Micro drilling, EDM(Electro discharge machining), ECDM(Electro discharge machining), USM(Ultrasonic machining), LBM(Laser beam machining), EBM(Electron beam machining). Especially, the USM technology can be applied to the dieletric brittle materials such as silicon, borosilicate glass, silicon nitride, quartz and ceramics with high aspect ratio. The micro machining system with machining force controlled position servo is developed in this paper and the optimized ultrasonic machining algorithm is constructed by the force controlled position servo control. The load cell is adapted in the force measuring and the servo control algorithm, suit for the ultrasonic machining characteristics, is estabilished with using the PID auto-tunning functions at the PMAC system which is generally adapted in the field of robot industries. The precision force signal amplifier is constructed with high precision operational amplifier AD524. The vacuum adsorption chuck which is made of titanum and internal flow line is engraved, is used in the workpiece fixing. The mahining results by USM shows that there are some deviation between the force command and the actual machining force that the servo control algorithm should be applied in the machining procedures. Therefore, the constant force controlled position servo system is developed for the micro USM system and by the examination machining process in USM, the stable USM system is realized by tracking the average value of machining force.

Influence of laser peening on fatigue crack initiation of notched aluminum plates

  • Granados-Alejo, Vignaud;Rubio-Gonzalez, Carlos;Parra-Torres, Yazmin;Banderas, J. Antonio;Gomez-Rosas, Gilberto
    • Structural Engineering and Mechanics
    • /
    • 제62권6호
    • /
    • pp.739-748
    • /
    • 2017
  • Notches such as slots are typical geometric features on mechanical components that promote fatigue crack initiation. Unlike for components with open hole type notches, there are no conventional treatments to enhance fatigue behavior of components with slots. In this work we evaluate the viability of applying laser shock peening (LSP) to extend the fatigue life of 6061-T6 aluminum components with slots. The feasibility of using LSP is evaluated not only on damage free notched specimens, but also on samples with previous fatigue damage. For the LSP treatment a convergent lens was used to deliver 0.85 J and 6 ns laser pulses 1.5 mm in diameter by a Q-switch Nd: YAG laser, operating at 10 Hz with 1064 nm of wavelength. Residual stress distribution was assessed by the hole drilling method. A fatigue analysis of the notched specimens was conducted using the commercial code FE-Safe and different multiaxial fatigue criteria to predict fatigue lives of samples with and without LSP. The residual stress field produced by the LSP process was estimated by a finite element simulation of the process. A good comparison of the predicted and experimental fatigue lives was observed. The beneficial effect of LSP in extending fatigue life of notched components with and without previous damage is demonstrated.

알루미늄 판재의 고 세장비 피어싱가공을 위한 작업변수의 영향 (The Influences of Process Parameters in Piercing with a High Aspect Ratio for Thick Aluminum Sheet)

  • 김종길;김종봉;김종호
    • 소성∙가공
    • /
    • 제23권1호
    • /
    • pp.23-28
    • /
    • 2014
  • The aspect ratio of a hole is defined as the ratio of the thickness to the diameter of the sheet metal. Most holes in the sheet metal industry are made by piercing. However, for thick sheets, which have an aspect ratio greater than 2, a machining process like drilling instead of piercing is usually used to make holes. In the current study, piercing, which is a shearing process, is evaluated to punch a hole with a high aspect ratio by using a newly designed die set-up. The piercing die was manufactured to prevent the punch from buckling and also to improve the alignment between the die components. An aluminum alloy sheet was selected for the experiments. The influence of several process parameters such as sheet thickness, clearance and stripping force were investigated. Experimentally, a hole with an aspect ratio of 5 was pierced. The resulting hole had a clean surface and the dimensional accuracy of pierced hole was considerably improved with decreasing clearance between punch and die. It is also shown that the larger penetration depth of the effective sheared surface can be achieved for high aspect ratio piercing relative to conventional piercing with a low aspect ratio.

A Trapping Behavior of GaN on Diamond HEMTs for Next Generation 5G Base Station and SSPA Radar Application

  • Lee, Won Sang;Kim, John;Lee, Kyung-Won;Jin, Hyung-Suk;Kim, Sang-Keun;Kang, Youn-Duk;Na, Hyung-Gi
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권2호
    • /
    • pp.30-36
    • /
    • 2020
  • We demonstrated a successful fabrication of 4" Gallium Nitride (GaN)/Diamond High Electron Mobility Transistors (HEMTs) incorporated with Inner Slot Via Hole process. We made in manufacturing technology of 4" GaN/Diamond HEMT wafers in a compound semiconductor foundry since reported [1]. Wafer thickness uniformity and wafer flatness of starting GaN/Diamond wafers have improved greatly, which contributed to improved processing yield. By optimizing Laser drilling techniques, we successfully demonstrated a through-substrate-via process, which is last hurdle in GaN/Diamond manufacturing technology. To fully exploit Diamond's superior thermal property for GaN HEMT devices, we include Aluminum Nitride (AlN) barrier in epitaxial layer structure, in addition to conventional Aluminum Gallium Nitride (AlGaN) barrier layer. The current collapse revealed very stable up to Vds = 90 V. The trapping behaviors were measured Emission Microscope (EMMI). The traps are located in interface between Silicon Nitride (SiN) passivation layer and GaN cap layer.

Metal Powder에 따른 증기화 증폭 시트의 개발을 통한 열 중량 분석 및 고출력 전자빔의 가공 특성 분석 (Analysis of machining characteristics of thermogravimetric analysis and high-power density electron beam through the development of vaporized amplification sheets according to metal powder)

  • 김현정;정성택;이주형;백승엽
    • Design & Manufacturing
    • /
    • 제14권1호
    • /
    • pp.56-62
    • /
    • 2020
  • An electron beam was used to mainly utilize for polishing, finishing, welding, a lithography process, etc. Due to the high technical level of difficulty of high-power density electron beam, it is difficult to secure related technologies. In this study, research was carried out to improve the machinability by developing the vaporized amplification sheets to realize the electron beam drilling technology. Their vaporized amplification sheets were analyzed by using the measurement of chemical and composition, which is such as TGA, SEM. We analyzed micro-hole processing using a microscope. Also, the thermal characteristics of vaporized amplification sheets are highly significant for applying to high-power density electron beam technique. So, we finished the vaporized amplification sheets according to the process conditions and analyzed it according to the machining conditions of the electron beam. It was confirmed that the effect on the experimental results differs depending on the influence of the metal powder contained in the developed material.

국산 죽재의 기계 가공성에 관한 연구 (Study on the Machinability of Korean Domestic Bamboo Species)

  • 이형우;김병남
    • Journal of the Korean Wood Science and Technology
    • /
    • 제27권1호
    • /
    • pp.56-63
    • /
    • 1999
  • 국산 죽재를 목재산업용 원재료로 활용할 수 있는 가능성을 타진하기 위하여 대표적인 우리나라 대나무 수종인 전남 담양산 맹종죽, 분죽 및 왕대의 절삭과 건조특성 등 기계가공성을 조사, 분석하였다. 연구 결과 쪼개기저항은 공구가 2.5cm 피삭재 내부로 진입하였을 때 최대로 상승하였으며, 칼날각 15도의 쐐기형 공구를 이용하면 쪼개기저항을 최소화할 수 있는 것으로 밝혀졌다. 또한 둥근톱과 띠톱에 의한 죽재의 절삭면 품질은 목재의 경우에 비하여 비교적 양호하였다. 한편 두께 12mm 맹종죽을 함수율 60%에서 10%까지 온도 $70^{\circ}C$로 건조하는데 약 62.5 시간이 소요되었다.

  • PDF

비용 최소화를 위한 플래어 시스템의 배관 서포트 타입 최적설계 (Optimal Determination of Pipe Support Types in Flare System for Minimizing Support Cost)

  • 박정민;박창현;김태수;최동훈
    • 대한조선학회논문집
    • /
    • 제48권4호
    • /
    • pp.325-329
    • /
    • 2011
  • Floating, production, storage and offloading (FPSO) is a production facility that refines and saves the drilled crude oil from a drilling facility in the ocean. The flare system in the FPSO is a major part of the pressure relieving system for hydrocarbon processing plants. The flare system consists of a number of pipes and complicated connection systems. Decision of pipe support types is important since the load on the support and the stress in the pipe are influenced by the pipe support type. In this study, we optimally determined the pipe support types that minimized the support cost while satisfying the design constraints on maximum support load, maximum nozzle load and maximum pipe stress ratio. Performance indices included in the design constraints for a specified design were evaluated by pipe structural analysis using CAESAR II. Since pipe support types were all discrete design variables, an evolutionary algorithm (EA) was used as an optimizer. We successfully obtained the optimal solution that reduced the support cost by 27.2% compared to the initial support cost while all the design requirements were satisfied.

Tool path planning of hole-making operations in ejector plate of injection mould using modified shuffled frog leaping algorithm

  • Dalavi, Amol M.;Pawar, Padmakar J.;Singh, Tejinder Paul
    • Journal of Computational Design and Engineering
    • /
    • 제3권3호
    • /
    • pp.266-273
    • /
    • 2016
  • Optimization of hole-making operations in manufacturing industry plays a vital role. Tool travel and tool switch planning are the two major issues in hole-making operations. Many industrial applications such as moulds, dies, engine block, automotive parts etc. requires machining of large number of holes. Large number of machining operations like drilling, enlargement or tapping/reaming are required to achieve the final size of individual hole, which gives rise to number of possible sequences to complete hole-making operations on the part depending upon the location of hole and tool sequence to be followed. It is necessary to find the optimal sequence of operations which minimizes the total processing cost of hole-making operations. In this work, therefore an attempt is made to reduce the total processing cost of hole-making operations by applying relatively new optimization algorithms known as shuffled frog leaping algorithm and proposed modified shuffled frog leaping algorithm for the determination of optimal sequence of hole-making operations. An industrial application example of ejector plate of injection mould is considered in this work to demonstrate the proposed approach. The obtained results by the shuffled frog leaping algorithm and proposed modified shuffled frog leaping algorithm are compared with each other. It is seen from the obtained results that the results of proposed modified shuffled frog leaping algorithm are superior to those obtained using shuffled frog leaping algorithm.

시추공 합성탄성파 기록을 통한 지하 불연속 경계면의 파악 (Identification of Subsurface Discontinuities via Analyses of Borehole Synthetic Seismograms)

  • 김지수;이재영;서용석;주현태
    • 지질공학
    • /
    • 제23권4호
    • /
    • pp.457-465
    • /
    • 2013
  • 지반 조사를 위해 흔히 수집하는 지표탐사 자료, 시추조사 자료, 지질공학 자료들을 서로 상관시켜 불연속 경계면 및 암반 파쇄대등의 분포를 파악하였다. 전기비저항 입체도와 공내 영상촬영을 통해 개략적인 지질 연약대의 주향 방향을 분석하고, 시추공 사이 탄성파 토모그래피 속도와 로즈 다이어그램을 통해 지층 및 암반 파쇄대의 공간적인 분포대를 파악하였다. 암반의 동적 물성을 파악하기 위해 S-PS 검층과 ${\gamma}-{\gamma}$ 검층으로 동적 탄성계수를 계산하여 푸아송 비 및 P파 속도와의 상관관계를 알아보았다. 지층의 불연속 경계면은 타격수 N값, 개별적인 밀도나 속도 정보를 이용하여 결정하는 것 보다 물리검층에서 수집한 속도와 밀도로부터 계산한 음향 임피던스의 대비, 즉 반사계수 자료와 시각적으로 잘 상관되었다. 암반에 발달한 주요 파쇄대 구간은 그 상부 경계면이 반사계수와 최적 리커 요소파의 곱말기로 계산된 합성탄성파 트레이스에서 극성이 음인 높은 진폭과 잘 상관되었다. 합성탄성파 기록으로 해석된 주된 파쇄대는 실제로 시추 코어 자료에서 관찰된 코어손실 구간 및 공내 영상촬영 자료에서 평가된 낮은 암질 구간과 잘 부합되었다.