• Title/Summary/Keyword: Drilling method

Search Result 553, Processing Time 0.031 seconds

Analysis of Thermal Behavior and Temperature Estimation by using an Observer in Drilling Processes (드릴링 공정의 열거동 해석과 관측기를 이용한 온도 추정법)

  • Kim, Tae-Hoon;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1499-1507
    • /
    • 2003
  • Physical importance of cutting temperatures has long been recognized. Cutting temperatures have strongly influenced both the tool life and the metallurgical state of machined surfaces. Temperatures in drilling processes are particularly important, because chips remain in contact with the tool for a relatively long time in a hole. Tool temperatures tend to be higher in drilling processes than in other in machining processes. This paper concerns with modeling of thermal behaviors in drilling processes as well as estimation of the cutting temperature distribution based on remote temperature measurements. One- and two-dimensional estimation problems are proposed to analyze drilling temperatures. The proposed thermal models are compared with solutions of finite element methods. Observer algorithms are developed to solve inverse heat conduction problems. In order to apply the estimation of cutting temperatures, approximation methods are proposed by using the solution of the finite element method. In two-dimensional analysis, a moving heat source according to feedrate of the drilling process is regarded as a fixed heat source with respect to the drilling location. Simulation results confirm the application of the proposed methods.

The Roughing Tool-Path Generation of Die-Cavity Shape Using the Drill (Drill을 이용한 Die-Cavity 형상의 황삭 가공 경로 생성)

  • Lim, P.;Lee, H. G;Yang, G. E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.398-401
    • /
    • 2001
  • This paper presents rough cutting pat고 drilling. This method has differences from conventional method which uses boundary curve by intersecting object to machine and each cutting plane. Die-cavity shape is drilled in z-map, we select various tool and remove much material in the short time. as a result, this method raise productivity. The major challenges in die-cavity pocketing include : 1)finding an inscribed circle for removing material of unmachined regions, 2) selecting optimal tool and efficiently arranging tool, 3) generating offset surface of shape, 4) determining machined width according to the selected tool, 5) detecting and removing unmachined regions, and 6) linking PJE(path-joining element). Conventional machining method calling contour-map is compared with drilling method using Z-map, for finding efficiency in the view of productivity.

  • PDF

A Study on the Analysis of Residual Stress of STS 304 Weldment Using Hole Drilling Method (구멍뚫기법(HDM)에 의한 STS 304 용접부의 잔류응력 해석에 관한 연구)

  • 고준빈;최원두;이영호
    • Journal of Welding and Joining
    • /
    • v.19 no.6
    • /
    • pp.664-670
    • /
    • 2001
  • The HDM(Hole Drilling Method) is a relatively simple and accurate methods in measuring residual stress of weldment. Various method of evaluating residual stress are studied in welding field. The method of cutting holes on the plate much affects the accuracy of result. Especially for the hard material like stainless which is difficult to cut preciously is difficult to measure residual stress of weldment. Because heat conduction of strainless steel is lower than other general steel, the magnitude of residual stress might be different as to changing of welding conditions. Therefore, the distribution of residual stress on the STS304 steel after welding using HDM is evaluated in this paper.

  • PDF

Determination of Residual Stress by the Hole Drilling Method Based on Displacement Measurement (변위 측정을 기본으로 한 구멍뚫기방법에 의한 잔류응력 측정 방법)

  • Shin, Dong Il;Joo, Jin Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1542-1550
    • /
    • 2005
  • This paper presents the numerical procedure for calculating non-uniform residual stresses based on relieved displacements obtained from incremental hole drilling. The relationship between the in-plane displacement produced by introducing a blind hole and the corresponding residual stress is established. Finite element calculations are described to evaluate the relieved coefficients required for the determination of non-uniform residual stresses. Validity of the proposed method has been tested through three axisymmetric test examples and two three-dimensional examples. As a result of . simulation on the test examples, it is found that this numerical procedure is well adopted to measuring non-uniform residual stress in the full hole depth range of the hole diameter from the surface. The accuracy of the hole drilling method with displacement measurement is discussed, comparing tile method with strain measurement

Case Study of Ground Disturbance Characteristic due to Drilling Machine in Adjacent Deep Excavation (근접 깊은 굴착에서 천공장비에 의한 지반교란 특성 사례 연구)

  • 김성욱;한병원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.77-84
    • /
    • 2003
  • Deep excavations in the urban areas have been frequently going on in large scale. Soil-nailing and Earth-anchor supporting methods are generally used in deep excavation. These construction methods cause ground disturbances during drilling process, and damages of adjacent structures and ground due to the differential settlement throughout construction period, and unexpected behaviors of supporting system according to the characteristics of drilling machine and ground condition. This article introduces two actual examples of adjacent deep excavation for the construction of university buildings in granitic Seoul area. The important results of construction and measurements obtained using Crawler drilling machine for Soil-nailing and Earth-anchor supporting methods are summarized. And some suggestions are given to improve and develop the technique of design and construction in the deep excavation projects having similar ground condition and supporting method.

  • PDF

Micro Drilling using 2-directional Vibration in a Plane (양방향 평면진동을 이용한 미세구멍가공)

  • Kim, Gi Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.4
    • /
    • pp.38-43
    • /
    • 2010
  • By generating 2-directional vibration in a xy plane of workpiece table, a newly developed micro drilling using 2-directional vibration was carried out. The vibration was produced by applying sinusoidal voltages to the orthogonally arranged piezoelectric materials built in the workpiece excitation table. Through the micro-drilling experiments using poly-carbonate and brass material, it was found that micro drilling using 2-directional vibration in a workpiece table could be an efficient method to enhance the form accuracy of machined workpiece by suppressing burr formation at both entry and exit region. A higher form accuracy could be obtained by increasing stiffness of feeding mechanism, decrease of geometric tolerance of combining jig, and development of high performance excitation table which generates amplified vibration at higher frequency.

Design of a Drilling Torque Controller in a Machining Center (머시닝센터에서 드릴링 토크 제어기의 설계)

  • 오영탁;권원태;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.513-518
    • /
    • 2001
  • As the machining depth increases, the drilling torque increases and fluctuates and the risk of drill failure also increases. Hence, drilling torque control is very important to prevent the drill from failure. In this study, a PID controller was designed to control the drilling torque in a machining center. The plant including the feed drive system, cutting process, and spindle system was modeled for controller design. The Ziegler-Nichols rule was used to determine the controller gain and control action times. The root locus plot was used to tune the controller gain for a certain cutting condition. Also, suggested was a simple method to obtain the tuned controller gain for an arbitrary cutting condition not using the Ziegler-Nichols rule and root locus plot. The cutting torque control, performance of the designed controller and the effect of gain tuning on the control performance were examined.

  • PDF

Evaluation of Cutting force and Surface accuracy on Drilling process by Temperature variation (온도 변화에 따른 드릴가공의 절삭력 변화와 가공정밀도 평가)

  • 이상천;정우섭;백인환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.895-898
    • /
    • 1997
  • These days, most of new materials, which is in use widely as cutting process materials have a characteristic in common. That is hard cutting. So, it happens that hardness by cutting temperature. And hardness on cutting process has an effect on tool wear or life shortness of tools. To solve these problems hot-machining is proposed. When a material is heated, organization of material is soften. So cutting process becomes easy. When such a hot-machining method applies on drilling process and then heated material is processed, cutting force is less than usual drilling process cutting force. In this paper, when a material is heated, cutting force on drilling process is measured. It is decided that the best suitable temperature area. And it suggest that the better hot-machining condition as surface accuracy is measured.

  • PDF

Laser Drilling of High-Density Through Glass Vias (TGVs) for 2.5D and 3D Packaging

  • Delmdahl, Ralph;Paetzel, Rainer
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.53-57
    • /
    • 2014
  • Thin glass (< 100 microns) is a promising material from which advanced interposers for high density electrical interconnects for 2.5D chip packaging can be produced. But thin glass is extremely brittle, so mechanical micromachining to create through glass vias (TGVs) is particularly challenging. In this article we show how laser processing using deep UV excimer lasers at a wavelength of 193 nm provides a viable solution capable of drilling dense patterns of TGVs with high hole counts. Based on mask illumination, this method supports parallel drilling of up over 1,000 through vias in 30 to $100{\mu}m$ thin glass sheets. (We also briefly discuss that ultrafast lasers are an excellent alternative for laser drilling of TGVs at lower pattern densities.) We present data showing that this process can deliver the requisite hole quality and can readily achieve future-proof TGV diameters as small $10{\mu}m$ together with a corresponding reduction in pitch size.

Adaptive Control by the Fusion of Genetic Algorithms and Fuzzy Inference on Micro Hole Drilling (미세드릴가공에 있어서 유전알고리즘과 퍼지추론의 합성에 의한 적응제어)

  • Paik, In-Hwan;Chung, Woo-Seop;Kweon, Hyeog-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.95-103
    • /
    • 1995
  • Recently the trends toward reduction in size of industrial products have increased the application of micro drilling. But micro drilling has still much difficulty so that the needs for active control which give adaptation to controller are expanding. In this paper initial cutting condition was determined for some sorkpieces by experiment and GA-based Fuzzy controller was devised by genetic algorithms and fuzzy inference. The fuzzy inference has been applied to the various prob- lems. However the determination of the membership function is one of the difficult problem. So we introduce a genetic algorithms and propose a self-tuning method of fuzzy membership function. Based on this intelligent control, automation of micro drilling was carried out like the cutting process of skilled machinist.

  • PDF