• Title/Summary/Keyword: Drill bit

Search Result 60, Processing Time 0.019 seconds

Analysis of the Influence of the Design Factors and Modeling for the 8inch Class Down-the-Hole Hammer (8인치급 다운더홀(DTH) 해머의 모델링 및 설계 인자에 따른 영향도 분석)

  • Lee, Chung No;Hong, Ki Chang;Jeong, Heon Sul
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.1-8
    • /
    • 2017
  • The Down-the-Hole hammer is one of the pneumatic drill equipment used for grinding, drilling, and mining. One the advantages of which is that a reduction work efficiency at deep site are relatively small compared to other drilling methods. Due to the large vibration in the underground area, it is difficult to measure the performance of the hammer, and hammer testing requires substantial production cost and operating expenses so research on the development of the hammer is insufficient. Therefore, this study has developed a dynamic simulation model that apprehends the operating principles of an 8-inch DTH hammer and calculates performance data such as performance impact force, piston speed, and BPM. By using the simulation model, design factors related to strike force and BPM were selected, and the influence of each design factors on performance was analyzed through ANOVA analysis. As a result, be the most important for BPM and the strike force are position of upper port that push the piston in the direction of the bit and in BPM, the size of the empty space between the bits and the piston is the second most important design factor.

Treatment of Anterior Glenoid Rim Fracture with Comminuted Fragment Using Arthroscopic Reduction and AO Headless Compression Screw Fixation - A Case Report - (관절경하 AO 무두 압박 나사를 이용한 견갑골 전방 관절와 분쇄 골절의 치료 - 증례 보고 -)

  • Kim, Hyung-Sik;Koh, Il-Hyun;Kim, Sung-Guk;Chun, Yong-Min;Kim, Sung-Jae;Kang, Ho-Jung
    • Clinics in Shoulder and Elbow
    • /
    • v.14 no.1
    • /
    • pp.94-98
    • /
    • 2011
  • Purpose: We present a case of anterior glenoid rim comminuted fracture that was treated with arthroscopic reduction and an AO headless compression screw (HCS) fixation. Materials and Methods: A 31-year old man complained of left shoulder pain after falling down on stairs. The anterior glenoid comminuted fragments were arthroscopically reduced. Fixation with an AO HCS was done after placement of 1.1 mm Kirschner wire as a guide pin through a standard cannulated anterosuperior portal. Results: Twelve months after the operation, union of the fracture was achieved and the range of motion was fully recovered. He did not complain of any discomfort during his activities of daily living. Conclusion: An AO HCS had various screw sizes and this was good for fixation of a small glenoid fracture and a long drill bit and screw driver were useful for fixation of deep seated glenoid fracture. A short guide wire could be replaced by a 1.1 mm K-wire. An AO HCS was useful for fixation of an anterior glenoid rim comminuted fracture.

Energy analysis-based core drilling method for the prediction of rock uniaxial compressive strength

  • Qi, Wang;Shuo, Xu;Ke, Gao Hong;Peng, Zhang;Bei, Jiang;Hong, Liu Bo
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.61-69
    • /
    • 2020
  • The uniaxial compressive strength (UCS) of rock is a basic parameter in underground engineering design. The disadvantages of this commonly employed laboratory testing method are untimely testing, difficulty in performing core testing of broken rock mass and long and complicated onsite testing processes. Therefore, the development of a fast and simple in situ rock UCS testing method for field use is urgent. In this study, a multi-function digital rock drilling and testing system and a digital core bit dedicated to the system are independently developed and employed in digital drilling tests on rock specimens with different strengths. The energy analysis is performed during rock cutting to estimate the energy consumed by the drill bit to remove a unit volume of rock. Two quantitative relationship models of energy analysis-based core drilling parameters (ECD) and rock UCS (ECD-UCS models) are established in this manuscript by the methods of regression analysis and support vector machine (SVM). The predictive abilities of the two models are comparatively analysed. The results show that the mean value of relative difference between the predicted rock UCS values and the UCS values measured by the laboratory uniaxial compression test in the prediction set are 3.76 MPa and 4.30 MPa, respectively, and the standard deviations are 2.08 MPa and 4.14 MPa, respectively. The regression analysis-based ECD-UCS model has a more stable predictive ability. The energy analysis-based rock drilling method for the prediction of UCS is proposed. This method realized the quick and convenient in situ test of rock UCS.

Development of Round Trip Occurrence Simulator Considering Tooth Wear of Drill Bit (시추비트의 마모도를 고려한 라운드 트립 발생 예측 시뮬레이터 개발)

  • Lee, Seung Soo;Kim, Kwang Yeom;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.480-492
    • /
    • 2013
  • After the introduction of geothermal power generation technology based on engineering reservoir creation that can be applied on non-volcanic region, industrial need for studies on the efficient and economic execution of costly deep-depth drilling work becomes manifest increasingly. However, since it is very difficult to predict duration and cost of boring work with acceptable reliability because of many uncertain events during the execution, efficient and organized work management for drilling is not easily achievable. Especially, the round trip that discretely occurs because of the abrasion of bit takes more time as the depth goes deeper and it has a great impact on the work performance. Therefore, a technology that can simulate the occurrence timing and depth of round trip in advance and therefore optimize them is essentially required. This study divided the abrasion state of bit into eight steps for simulation cases and developed a forecast algorithm, i.e., TOSA which can analyze the depth and timing of round trip occurrence. A methodology that can divide a unit section for simulation has been suggested; while the Bourgoyne and Young model has been used for the forecast of drilling rates and bit abrasion extent by section. Lastly, the designed algorithm has been systemized for the convenience of the user.

The Effects of Low-intensity Ultrasound on TGF-$\beta$1 Expression and Healing of Rat Femur Fracture (저강도 초음파가 흰쥐 대퇴골 골절치유와 TGF-$\beta$1의 발현에 미치는 영향)

  • Nam, Ki-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.4
    • /
    • pp.97-102
    • /
    • 2009
  • Purpose: The purpose of this study was to investigate the effects of low intensity pulsed ultrasound on TGF-$\beta$1 expression and healing of rat femur penetrating fractures. Methods: Rats were anesthetized with ketamine and xylazine. Using aseptic technique, we exposed the lateral right femoral diaphysis with removal of the periosteum. We made one hole along its long axis with an electrically-driven 1.8 mm diameter drill bit. Postoperatively, rats were divided into two groups (a control group, n=15; an experimental group, n=15). The experimental group was treated with low intensity pulsed ultrasound (pulse rate: 1:4, 0.5 W/$cm^2$, 10 minutes, 1 time per day) for 3 weeks. The control group was treated with sham ultrasound (with the US unit turned off). Results: The experimental group achieved more callus formation and TGF-$\beta$1 expression than the control group at the $7^{th}$, $14^{th}$ and $21^{st}$ days after low intensity pulsed ultrasound treatment. Conclusion: This study suggests that low intensity pulsed ultrasound facilitates bone fracture repair, possibly via increased TGF-$\beta$1 expression.

  • PDF

Assessment of Notch Effect on Fracture Plane Control (노치 발파공에 의한 파단면 제어 효과에 관한 연구)

  • Kim, Kwang-Yeom;Kim, Dong-Gyou;Jeong, Dong-Ho;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.26 no.1
    • /
    • pp.57-66
    • /
    • 2008
  • It has been proven that the pre-cracking notches in a blasting hole are applicable to control crack growth along specific direction. This study compared the roughnesses of the fracture plane resulting from test blasts using a regular charge hole and notched charge hole to investigate the effect of the notches of charge hole on the formation of fracture plane. A notch bit system was used to drill the notched hole in the rock specimens. The surfaces of the fracture planes were reconstructed as Digital Elevation Model (DEM) using digital photogrammetric method and the roughnesses of the surfaces were estimated with Surface Roughness Profile Index (SRp).

Development of Uneven Excavation Method for Reinforcement of Ground Slope (사면보강을 위한 요철형 암반굴착 공법개발)

  • Kim, Hyun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.259-266
    • /
    • 2020
  • In this study, required drill bits and excavation methods were developed for an uneven drilling method that can solve the problem of performance degradation of rock bolts. The developed drill bit's excavation performance was verified using rock with a strength of 100 MPa or more. In addition, for the relative evaluation of the uneven excavation method, experimental specimens were prepared for models with and without irregularities, and tests were performed. As a result of the experiment, the model with unevenness exhibited an average critical draw resistance of 801.6 kN, which is about 1.7 times the value of 468.7 kN for the model without unevenness, thus confirming the effect sufficiently. Therefore, it is expected that the resistance performance will significantly increase despite an increase in the uneven hole diameter of 20 mm. In the future, the results of this study could be used as basic data when performing other studies using numerical analysis models and performance verification through experiments to obtain an optimized rock forming method.

Drilling Characteristics of PVC Materials (PVC 재료의 드릴링 특성)

  • Byun, J.Y.;Park, Na-Ram;Chung, S.W.;Kwon, S.H.;Kwon, S.G.;Park, J.M.;Kim, J.S.;Choi, Won-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.70-77
    • /
    • 2015
  • This paper develops and evaluates a mechanical machining process which involves drilling on PVS material. According to the material, two treatment experiments were conducted, one involving drilling in a wet condition or using a lubricant and one involving drilling in a dry condition with no lubricant. Drilling in a dry condition showed better performance in terms of the cutting time than in the wet condition. Otherwise, the wet condition has several advantages. The lubricant influenced the burr diameter size and minimized the temperature on the surface of the work piece. During the wet condition drilling process, a smaller burr diameter size was noted as compared to the dry condition. The temperature showed a linear correlation with the drill bit size, where a least-square analysis provided an $R^2$valuewhichexceeded 0.95. The wet condition required more cutting time than the dry condition. In this condition, the water provides a lubrication effect. A thin layer between the cutting edges and the surface of the work piece is formed. The chip formation is affected by the drilling depth. The color on the tips of the chips was darker than in the initial condition. No correlation between the drilling depth and the bore roughness was noted, but the variation of the cutting speed or the RPM influenced the roughness of the bore. The optimum cutting speed ranged from 40 RPM to 45 RPM in the condition which provided the finest roughness surface.

The rock fragmentation mechanism and plastic energy dissipation analysis of rock indentation

  • Zhu, Xiaohua;Liu, Weiji
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.195-204
    • /
    • 2018
  • Based on theories of rock mechanics, rock fragmentation, mechanics of elasto-plasticity, and energy dissipation etc., a method is presented for evaluating the rock fragmentation efficiency by using plastic energy dissipation ratio as an index. Using the presented method, the fragmentation efficiency of rocks with different strengths (corresponding to soft, intermediately hard and hard ones) under indentation is analyzed and compared. The theoretical and numerical simulation analyses are then combined with experimental results to systematically reveal the fragmentation mechanism of rocks under indentation of indenter. The results indicate that the fragmentation efficiency of rocks is higher when the plastic energy dissipation ratio is lower, and hence the drilling efficiency is higher. For the rocks with higher hardness and brittleness, the plastic energy dissipation ratio of the rocks at crush is lower. For rocks with lower hardness and brittleness (such as sandstone), most of the work done by the indenter to the rocks is transferred to the elastic and plastic energy of the rocks. However, most of such work is transferred to the elastic energy when the hardness and the brittleness of the rocks are higher. The plastic deformation is small and little energy is dissipated for brittle crush, and the elastic energy is mainly transferred to the kinetic energy of the rock fragment. The plastic energy ratio is proved to produce more accurate assessment on the fragmentation efficiency of rocks, and the presented method can provide a theoretical basis for the optimization of drill bit and selection of well drilling as well as for the selection of the rock fragmentation ways.

Experimental Evaluation for Ultimate Flexural Behaviors of PSC beams with A Corroded Tendon (PS강연선이 부식된 PSC보의 극한휨거동 평가실험)

  • Youn, Seok-Goo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.843-854
    • /
    • 2013
  • This paper presents experimental research work for the evaluation of ultimate flexural behaviors of prestressed concrete beams with a corroded tendon. In order to evaluate the effects of loss of prestress or loss of tendon area on the ultimate flexural strength of prestressed concrete beams, static load tests are conducted using five prestressed concrete beams. After exposing prestressing tendons in two test beams using 25mm drill bit, the exposed tendons were corroded using an accelerating corrosion equipment to simulate loss of tendon area. During the tests, steel strains, concrete strains and displacements at the center of test beams were measured, and acoustic emission measurements were conducted to detect wire fractures. Based on the test results, evaluation method for predicting flexural strength of prestressed concrete beams with corroded tendons is investigated. In addition, evaluation methods for predicting the existence of corroded tendons in post-tensioned prestressed concrete beams at service loads are discussed.