• Title/Summary/Keyword: Drill and blast

Search Result 37, Processing Time 0.024 seconds

Advancement of Blast Effect by Inducing Drill Jumbo on Automatic Drilling System (점보드릴 자동천공 시스템 도입에 의한 발파효과 향상)

  • Kim, Seung-Jun;Kim, Jeong-Gyu;Ko, Young-Hun;Ahn, Je-Min;Kim, Nam-su;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.34 no.2
    • /
    • pp.10-17
    • /
    • 2016
  • Drilling operation for blasting is an important factor to determine blast effect. Drilling errors that arise from performing drilling for blasting purposes can reduce blasting effect causing residual holes, overbreak, and heterogeneous fragmentation, etc. Automatic drilling system was induced for precise drilling. As a result, drilling error caused by spaces between holes and burden was minor at 0~2.6% and accordingly, blasting effect was improved with over 90% drilling rate, the ratio of overbreak amount to total drilling amount at 4.3%, proportion of fragmentation rock under 50cm at 89~95% and so from this analyses, it was estimated to reduce the total cycle times related to blasting process.

Whole-body Vibration Exposure of Drill Operators in Iron Ore Mines and Role of Machine-Related, Individual, and Rock-Related Factors

  • Chaudhary, Dhanjee Kumar;Bhattacherjee, Ashis;Patra, Aditya Kumar;Chau, Nearkasen
    • Safety and Health at Work
    • /
    • v.6 no.4
    • /
    • pp.268-278
    • /
    • 2015
  • Background: This study aimed to assess the whole-body vibration (WBV) exposure among large blast hole drill machine operators with regard to the International Organization for Standardization (ISO) recommended threshold values and its association with machine- and rock-related factors and workers' individual characteristics. Methods: The study population included 28 drill machine operators who had worked in four opencast iron ore mines in eastern India. The study protocol comprised the following: measurements of WBV exposure [frequency weighted root mean square (RMS) acceleration ($m/s^2$)], machine-related data (manufacturer of machine, age of machine, seat height, thickness, and rest height) collected from mine management offices, measurements of rock hardness, uniaxial compressive strength and density, and workers' characteristics via face-to-face interviews. Results: More than 90% of the operators were exposed to a higher level WBV than the ISO upper limit and only 3.6% between the lower and upper limits, mainly in the vertical axis. Bivariate correlations revealed that potential predictors of total WBV exposure were: machine manufacturer (r = 0.453, p = 0.015), age of drill (r = 0.533, p = 0.003), and hardness of rock (r = 0.561, p = 0.002). The stepwise multiple regression model revealed that the potential predictors are age of operator (regression coefficient ${\beta}=-0.052$, standard error SE = 0.023), manufacturer (${\beta}=1.093$, SE = 0.227), rock hardness (${\beta}=0.045$, SE = 0.018), uniaxial compressive strength (${\beta}=0.027$, SE = 0.009), and density (${\beta}=-1.135$, SE = 0.235). Conclusion: Prevention should include using appropriate machines to handle rock hardness, rock uniaxial compressive strength and density, and seat improvement using ergonomic approaches such as including a suspension system.

A Case of Application-blasting in the Urban Blasting Works (도심지 터파기를 위한 응용발파 시공 사례)

  • Kim, Taihyun;Park, Yongwon;Cho, Raehun;Kim, Hongyool;Jeong, Byungho
    • Explosives and Blasting
    • /
    • v.34 no.2
    • /
    • pp.18-30
    • /
    • 2016
  • A drill & blasting method using explosives is the most efficient way to break the rock in the urban projects. However, the blasting method cause vibration, noise and fly-rock as blast pollutions so that blasting wroks are restricted by adjacent structures such as apartment and residence houses. To conduct blasting works at near structures, the numbers of blast-holes a blast and the size of the blast are limited by kinds of detonators and initiation methods. So, the production rate is reduced and the construction period should be increased. Therefore, in this case the deck-charge blasting methods using available detonators in domestic market were designed and evaluated in order to confirm the application possibilities in specific urban sites.

A fundamental study on the automation of tunnel blasting design using a machine learning model (머신러닝을 이용한 터널발파설계 자동화를 위한 기초연구)

  • Kim, Yangkyun;Lee, Je-Kyum;Lee, Sean Seungwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.431-449
    • /
    • 2022
  • As many tunnels generally have been constructed, various experiences and techniques have been accumulated for tunnel design as well as tunnel construction. Hence, there are not a few cases that, for some usual tunnel design works, it is sufficient to perform the design by only modifying or supplementing previous similar design cases unless a tunnel has a unique structure or in geological conditions. In particular, for a tunnel blast design, it is reasonable to refer to previous similar design cases because the blast design in the stage of design is a preliminary design, considering that it is general to perform additional blast design through test blasts prior to the start of tunnel excavation. Meanwhile, entering the industry 4.0 era, artificial intelligence (AI) of which availability is surging across whole industry sector is broadly utilized to tunnel and blasting. For a drill and blast tunnel, AI is mainly applied for the estimation of blast vibration and rock mass classification, etc. however, there are few cases where it is applied to blast pattern design. Thus, this study attempts to automate tunnel blast design by means of machine learning, a branch of artificial intelligence. For this, the data related to a blast design was collected from 25 tunnel design reports for learning as well as 2 additional reports for the test, and from which 4 design parameters, i.e., rock mass class, road type and cross sectional area of upper section as well as bench section as input data as well as16 design elements, i.e., blast cut type, specific charge, the number of drill holes, and spacing and burden for each blast hole group, etc. as output. Based on this design data, three machine learning models, i.e., XGBoost, ANN, SVM, were tested and XGBoost was chosen as the best model and the results show a generally similar trend to an actual design when assumed design parameters were input. It is not enough yet to perform the whole blast design using the results from this study, however, it is planned that additional studies will be carried out to make it possible to put it to practical use after collecting more sufficient blast design data and supplementing detailed machine learning processes.

Effect of orientation of fracture zone on tunnel behavior - Numerical Investigation (파쇄대의 공간적 분포가 터널 거동에 미치는 영향 - 수치해석 연구)

  • Yoo, Chung-Sik;Cho, Yoon-Gyu;Park, Jung-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.253-270
    • /
    • 2013
  • This paper concerns the effect of orientation and geometric characteristics of a fracture zone on the tunnel behavior using a numerical investigation. A parametric study was executed on a number of drill and blast tunnelling cases representing different fracture and tunnelling conditions using two and three dimensional finite element analyses. The variables considered include the strike and dip angle of fracture zone relative to the longitudinal tunnel axis, the width and the clearance of the fracture zone, the tunnel depth, and the initial lateral stress coefficient. The results of the analyses were examined in terms of the tunnel deformation including crown settlement, convergence, and invert heave as well as shotcrete lining stresses. The results indicate that the tunnel deformation as well as the shotcrete lining stress are strongly influenced by the orientation of the fracture zone, and that such a trend becomes more pronounced for tunnels with greater depths.

On the vibration influence to the running power plant facilities when the foundation excavated of the cautious blasting works. (S화력발전소 3, 4호기 증설에 따르는 정밀발파작업으로 인한 인접가동발전기및 구조물에 미치는 파동영향조사)

  • Huh Ginn
    • Explosives and Blasting
    • /
    • v.8 no.1
    • /
    • pp.3-16
    • /
    • 1990
  • The cautious blasting works had been used with emulsion explosion electric M/S delay caps. Drill depth was from 3m to 6m with Crawler Drill $\varphi{70mm}$ on the calcalious sand stone(sort-moderate-semi hard Rock). The total numbers of feet blast were 88. Scale distance were induces 15.52-60.32. It was applied to propagation Law in blasting vibration as follows. Propagtion Law in Blasting Vibration $V=K(\frac{D}{W^b})^n$ where V : Peak partical velocity(cm/sec) D : Distance between explosion and recording sites (m) W : Maximum Charge per delay-period of eighit milliseconds or more(Kg) K : Ground transmission constant, empirically determind on th Rocks, Explosive and drilling pattern ets. b : Charge exponents n : Reduced exponents Where the quantity $D/W^b$ is known as the Scale distance. Above equation is worked by the U.S Bureau of Mines to determine peak particle velocity. The propagation Law can be catagrorized in three graups. Cabic root Scaling charge per delay Square root Scaling of charge per delay Site-specific Scaling of charge per delay Charge and reduction exponents carried out by multiple regressional analysis. It's divided into under loom and over loom distance because the frequency is verified by the distance from blast site. Empirical equation of cautious blasting vibration is as follows. Over 30m----under l00m----- $V=41(D/3\sqrt{W})^{-1.41}$ -----A Over l00m-----$V= 121(D/3\sqrt{W})^{-1.66}$-----B K value on the above equation has to be more specified for furthur understang about the effect of explosives, Rock strength. And Drilling pattern on the vibration levels, it is necessary to carry out more tests.

  • PDF

A Study of Economic Aspects on 3-D Scanning Measurement during Tunnel Construction (3차원 스캔을 이용한 터널계측의 경제성에 관한 연구)

  • Choi, Won-Il;Park, Geun-Young;Cho, Kook-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.77-81
    • /
    • 2010
  • D&B(Drill & Blast) method in tunnel construction requires accurate and rapid measurement of the ground movement, which is essential for feedback analysis. Case study and adaptability of IT technique for tunnel survey are discussed in this paper. The application of laserscannig and existing light wave instrument method in the field of tunnel construction were reported in several advanced country including Austria and Japan. Survey for the shoulder movements by IT survey method was conducted at a subway construction site and the results were compared to the conventional method. Also, the economic aspects of laserscannig method were analyzed using measured data which were categorized by expenses, frequency, interval and period in the field of construction. Therefore IT survey solution may contribute to execute more economic and safe construction

On the vibration influence to the running power plant facilities when the foundation excavated of the cautious blasting works. (S 화력발전소 3, 4호기 증설에 따르는 정밀발파작업으로 인한 인접가동발전기 및 구조물에 미치는 진동영향조사)

  • Huh Ginn
    • Explosives and Blasting
    • /
    • v.9 no.4
    • /
    • pp.3-12
    • /
    • 1991
  • The cautious blasting works had been used with emulsion explosion electric M /S delay caps. Drill depth was from 3m to 6m with Crawler Drill 70mm on the calcalious sand stone (soft-moderate-semi hard Rock) . The total numbers of feet blast were 88. Scale distance were induces 15.52-60.32. It was applied to Propagation Law in blasting vibration as follows .Propagtion Law in Blasting Vibration V=k(D/W/sup b/)/sup n/ where V : Peak partical velocity(cm/sec) D : Distance between explosion and recording sites(m) W ; Maximum Charge per delay -period of eight milliseconds or more(Kg) K : Ground transmission constant, empirically determind on the Rocks, Explosive and drilling pattern ets. b : Charge exponents n : Reduced exponents Where the quantity D/W/sup b/ is known as the Scale distance. Above equation is worked by the U.S Bureau of Mines to determine peak particle velocity. The propagation Law can be catagrorized in three groups. Cabic root Scaling charge per delay Square root Scaling of charge per delay Site-specific Scaling of charge delay Charge and reduction exponents carried out by multiple regressional analysis. It's divided into under loom and over loom distance because the frequency is varified by the distance from blast site. Empirical equation of cautious blasting vibration is as follows. Over 30m--under 100m----V=41(D/ W)/sup -1.41/-----A Over l00m---------V=121(D/ W)/sup -1.56/-----B K value on the above equation has to be more specified for furthur understand about the effect of explosives. Rock strength, And Drilling pattern on the vibration levels, it is necessary to carry out more tests.

  • PDF

On the vibration influence to the running power plant facilities when the foundation excavated of the cautious blasting works (삼천포화력발전소 3, 4호기 증설에 따르는 정밀발파작업으로 인한 인접가동발전기 및 구조물에 미치는 진동영향조사)

  • Huh, Ginn
    • Journal of the Korean Professional Engineers Association
    • /
    • v.24 no.6
    • /
    • pp.97-105
    • /
    • 1991
  • The cautious blasting works had been used with emulsion explosion electric M/S delay caps. Drill depth was from 3m to 6m with Crawler Drill ø70mm on the calcalious sand stone (soft-moderate-semi hard Rock). The total numbers of fire blast were 88 round. Scale distance were induces 15.52-60.32. It was applied to propagation Law in blasting vibration as follows. Propagation Law in Blasting Vibration (Equation omitted) where V : Peak partical velocity(cm/sec) D : Distance between explosion and recording sites(m) W : Maximum Charge per delay-period of eighit milliseconds o. more(kg) K : Ground transmission constant, empirically determind on the Rocks, Explosive and drilling pattern ets. b : Charge exponents n : Reduced exponents Where the quantity D / W$^n$ is known as the Scale distance. Above equation is worked by the U.S Bureau of Mines to determine peak particle velocity. The propagation Law can be catagrorized in three graups. Cubic root Scaling charge per delay Square root Scaling of charge per delay Site-specific Scaling of charge per delay Charge and reduction exponents carried out by multiple regressional analysis. It's divided into under loom and over 100m distance because the frequency is verified by the distance from blast site. Empirical equation of cautious blasting vibration is as follows. Over 30 ‥‥‥under 100m ‥‥‥V=41(D/$^3$√W)$\^$-1.41/ ‥‥‥A Over 100 ‥‥‥‥under 100m ‥‥‥V=121(D/$^3$√W)$\^$-1.56/ ‥‥‥B K value on the above equation has to be more specified for furthur understang about the effect of explosives, Rock strength. And Drilling pattern on the vibration levels, it is necessary to carry out more tests.

  • PDF

On the study of the measurement of blasting Vibration and Sound influenced to housing structure at Wire-Tunnelling (부산 통신구굴진 발파작업으로 인한 지상주택 구조물에 미치는 진동폭음영향계측조사보고)

  • Huh Ginn
    • Explosives and Blasting
    • /
    • v.8 no.2
    • /
    • pp.3-17
    • /
    • 1990
  • The Caustious blasting have often increased Complaints of ground Vibration and Sound when the Wire-Tunnel Constructed in Pusan. In order to prevent the influence to housing structure, it was necessary to predict blasting-Induced Vibration and Sound. The Suveyer determined the Burden and spacing of Drill holes, minimum delay charges within a allowable Vibration and Sound Level. Tunnel drilling and Ignition patterns are made as follows; No. 1 Tunel (Stable rock, hard rock) No.2 Tunnel (Instable plastic rock; wethered rock) and other Tunnels (Instable rock). The result of 1st testing blasting of No. 1 Tunnel was recorded Under allowable Vibration Level but sound was over 75 Db of allowable value. So Tunnel drilling pattern was amended with 52 Non-charg holes to reduce the blast-sound. The other pattern had no need to amend.

  • PDF