• Title/Summary/Keyword: Drift velocity

Search Result 227, Processing Time 0.035 seconds

New Method of Computing the Stokes Drift Including Shear Effect in the Cross-Sectional Flow Field (유수단면 흐름장에서 Shear 효과를 갖는 Stokes Drift의 계산법)

  • Kim, Jong-Hwa;Park, Byong-Su
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.1
    • /
    • pp.9-26
    • /
    • 1997
  • Stokes drift(SD) and Lagrangian discharge(LD) are important factors for analysis of flushing time, tidal exchange, solute transport and pollutant dispersion. The factors should be calculated using the approached method to flow phenomena. The aim of this paper re-examines the previous procedures for computing the SD and LD, and is to propose the new method approached to stratified flow field in the cross-section of coastal region, e.g. Masan Bay. The intensity of velocity near the bottom boundary layer(BBL) depends on the sea-bed irregularity in the coastal estuaries. So we calculated the depth mean velocity(DMV) considering that of BBL omitted in Kjerfve's calculation method. It revealed that BBL effect resulting in application of the bay acts largely on DMV in half more among 1l stations. The new expression of SD and LD per unit width in the cross-section using the developed DMV and proposed decomposition procedure of current were derived as follow : $$Q=u_0+\frac{1}{2}H_1{U_1cos(\varphi_h-\varphi_u)+U_3cos(\varphi_h-\varphi{ud})} LD ED SD$(Q_{skim}+Q_{sk2}) The third term, $Q_{sk2}$, on the right-hand of the equation is showed newly and arise from vertical oscillatory shear. According to the results applied in 3 cross-sections including 11 stations of the bay, the volume difference between proposed and previous SD was founded to be almost 2 times more at some stations. But their mean transport volumes over all stations are 18% less than the previous SD. Among two terms of SD, the flux of second term, $Q_{skim}$, is larger than third term, $Q_{sk2}$, in the main channel of cross-section, so that $Q_{skim}$ has a strong dependence on the tidal pumping, whereas third term is larger than second in the marginal channel. It means that $Q_{sk2}$ has trapping or shear effect more than tidal pumping phenomena. Maximum range of the fluctuation in LD is 40% as compared with the previous equations, but mean range of it is showed 11% at all stations, namely, small change. It mean that two components of SD interact as compensating flow. Therefore, the computation of SD and LD depend on decomposition procedure of velocity component in obtaining the volume transport of temporal and spacial flow through channels. The calculation of SD and LD proposed here can separate the shear effect from the previous SD component, so can be applied to non-uniform flow condition of cross-section, namely, baroclinic flow field.

  • PDF

Two-Dimensional Numerical Simulation of GaAs MESFET Using Control Volume Formulation Method (Control Volume Formulation Method를 사용한 GaAs MESFET의 2차원 수치해석)

  • Son, Sang-Hee;Park, Kwang-Mean;Park, Hyung-Moo;Kim, Han-Gu;Kim, Hyeong-Rae;Park, Jang-Woo;Kwack, Kae-Dal
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.1
    • /
    • pp.48-61
    • /
    • 1989
  • In this paper, two-dimensional numerical simulation of GaAs MESFFT with 0.7${\mu}m$ gate length is perfomed. Drift-diffusion model which consider that mobility is a function of local electric field, is used. As a discretization method, instead of FDM (finite difference method) and FEM (finite element method), the Control-Volume Formulation (CVF) is used and as a numerical scheme current hybrid scheme or upwind scheme is replaced by power-law scheme which is very approximate to exponential scheme. In the process of numerical analysis, Peclet number which represents the velocity ratio of drift and diffusion, is introduced. And using this concept a current equation which consider numerical scheme at the interface of control volume, is proposed. The I-V characteristics using the model and numerical method has a good agreement with that of previous paper by others. Therefore, it is confined that it may be useful as a simulator for GaAs MESFET. Besides I-V characteristics, the mechanism of both velocity saturation in drift-diffusion model is described from the view of velocity and electric field distribution at the bottom of the channel. In addition, the relationship between the mechanism and position of dipole and drain current, are described.

  • PDF

Extraction of Effective Carrier Velocity and Observation of Velocity Overshoot in Sub-40 nm MOSFETs

  • Kim, Jun-Soo;Lee, Jae-Hong;Yun, Yeo-Nam;Park, Byung-Gook;Lee, Jong-Duk;Shin, Hyung-Cheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.115-120
    • /
    • 2008
  • Carrier velocity in the MOSFET channel is the main driving force for improved transistor performance with scaling. We report measurements of the drift velocity of electrons and holes in silicon inversion layers. A technique for extracting effective carrier velocity which is a more accurate extraction method based on the actual inversion charge measurement is used. This method gives more accurate result over the whole range of $V_{ds}$, because it does not assume a linear approximation to obtain the inversion charge and it does not limit the range of applicable $V_{ds}$. For a very short channel length device, the electron velocity overshoot is observed at room temperature in 37 nm MOSFETs while no hole velocity overshoot is observed down to 36 nm. The electron velocity of short channel device was found to be strongly dependent on the longitudinal field.

Temporal and Spatial Spreading Characteristic of Drift Soil due to the Reclamation in the Pusan Port (해양 매립 및 준설토 투기에 따른 부유사 확산의 시.공간적 특성에 관한 연구)

  • 김용원;김종인;윤한삼;홍도웅
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.196-203
    • /
    • 2000
  • In this study, the evaluation method of diffusion characteristics of Suspended Soli&SS) and the generation limit(source and thick) are investigated, which is significantly affecting on marine examined by construction works such as dredging and reclamation. Dispersion characteristics of SS is examined by hydraulic tests and numerical works in consideration with the Pusan Port. Hydraulic model test was performed in 2-D wave flume to find the limit wave conditon of re-suspension of solid as well as the time dependent characteristics of settlement The results obtainded in the study are as follows; 1) The quantituative evaluation af SS is the basic parameter of marine environmental impact assessment in related with the port development The SS increases as the water content of sea bed solid increases and the density decreases. 2) The sea bed solid in Sinsundai area, Pusan Port has the water content range of 83~157% 3) The ratio of suspension velocity against settlement velocity is about 0.25 and SS concentration converges as the wave heigh. 4) The SS increases 2 time when time step increases 3 time(10 sec to 30 sec) in numerical simulation It means that the effect of the time step should be checked in detail to stable. The diffusion The diffusion coefficient are Affiected senstively in the dispersion process while sea ved friction coefficinet have not strong relation in the simulated area

  • PDF

Experimental Study on Two-Phase Flow Parameters of Subcoolet Boiling in Inclined Annulus

  • Lee, Tae-Ho;Kim, Moon-Oh;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.29-48
    • /
    • 1999
  • Local two-phase flow parameters of subcooled flow boiling in inclined annulus were measured to investigate the effect of inclination on the internal flow structure. Two-conductivity probe technique was applied to measure local gas phasic parameters, including void fraction, vapor bubble frequency, chord length, vapor bubble velocity and interfacial area concentration. Local liquid velocity was measured by Pilot tube. Experiments were conducted for three angles of inclination; 0$^{\circ}$(vertical), 30$^{\circ}$, 60$^{\circ}$. The system pressure was maintained at atmospheric pressure. The range of average void fraction was up to 10% and the average liquid superficial velocities were less than 1.3 m/sec. The results of experiments showed that the distributions of two-phase How parameters were influenced by the angle of channel inclination. Especially, the void fraction and chord length distributions were strongly affected by the increase of inclination angle, and flow pattern transition to slug flow was observed depending on the How conditions. The profiles of vapor velocity, liquid velocity and interfacial area concentration were found to be affected by the non-symmetric bubble size distribution in inclined channel. Using the measured distributions of local phasic parameters, an analysis for predicting average void fraction was performed based on the drift flux model and flowing volumetric concentration. And it was demonstrated that the average void fraction can be more appropriately presented in terms of flowing volumetric concentration.

  • PDF

The Study for attitude determination and heading production using AHRS (AHRS을 이용한 자세결정과 Heading 산출을 위한 연구)

  • 백기석;박운용;차성렬;홍순헌
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.59-64
    • /
    • 2004
  • In this paper, the error compensation method of the low-cost IMU is proposed. In general, the position and attitude error calculated by accelerometers and gyros grows with time. Therefore the additional information is required to compensate the drift. The attitude angles can be bound accelerometer mixing algorithm and the heading angle can be aided by single antenna GPS velocity. The Kalman filter is used for error compensation. The result is verified by comparing with the attitude calculated by Attitude Heading Reference System with Micro Electro Mechanical System for a basis

  • PDF

A Study on the Electron Transport Coefficients in Hydrogen Molecular ($H_2$의 전자 수송 계수에 관한 연구)

  • Park, Eun-Joo;Jeon, Byung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1402_1403
    • /
    • 2009
  • The electron transport coefficients in hydrogen molecular is calculated over the range of E/N values from 0.01 to 300 Td and at temperature state of 77K, 293K and 300K by Boltzmann equation method. The results gained that the values of the electron transport coefficients such as the electron drift velocity, the electron ionization coefficients, longitudinal diffusion coefficients consisted with the results of measured and calculated for a ranage of E/N.

  • PDF

A Study on discharge gas of Fluorescent Induction Lamp (무전극 램프의 방전가스 연구)

  • Kim, Keun;Jeon, Byung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1481_1482
    • /
    • 2009
  • Pure Xe, Kr and Ne atoms and Mixures of Xe-Ne used in fluorescent induction lamps(FILs). However standard regulation of FILs is not made up until now. Therefore, the electron transport coefficients, the electron drift velocity W, the longitudinal diffusion coefficient NDL and the ionization coefficient $\alpha$/N in pure Xe, Kr, Ne gases and Xe-Ne mixtures(1:9, 5:5, 7:3) were calculated over the wide E/N range from 0.01 to 500 Td at 1 Torr by two-term approximation of the Boltzman equation.

  • PDF

Simulation Technique for the Gas Discharges

  • Paek, Yong-Hyun;Lee, Bok-Heui
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.263-265
    • /
    • 1988
  • The electron swarm drift velocity for nitrogen gas is calculated in the range of 4 - 240 [Td] (1 Td = $10^{-17}V{\cdot}cm^2$). The result is in good agreement with the data measured by the time-of-flight method in the previous study. Also, an accurate and efficient method for solving the electron swarm parameters in gases is described.

  • PDF

The simulation of electrons swarm parameter in He gas is used by Boltzman equation (볼츠만 방정식을 이용한 Helium 가스의 전자군 파라미터 시뮬레이션)

  • 송병두;하성철;김대연
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.155-158
    • /
    • 1998
  • This paper is calculated at electron swarm simulation by Back Prolongation of Boltzmann equation for range of E/N values from 0.1~200[Td], pressure P= 1.0[Torr], temperature T=300[ 。K], the electron swarm parameter(drift velocity, longitudinal . transverse diffusion coefficients, characteristic energy, etc) in He gas is used by electron collision cross section, particularly explicate the simulation technique, and consider electrical conduction characteristic of He gas.

  • PDF