• Title/Summary/Keyword: Drift error

Search Result 192, Processing Time 0.025 seconds

A study on characteristics of piezo-buzzer for pressure sensor (압력센서용 압전부저의 특성에 관한 연구)

  • 신영록;김홍근;김철한;최헌일;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.985-988
    • /
    • 2001
  • A piezo-buzzer being used for the purpose of generation of audible frequency, which is a electric-acoustic transducer utilizing the inverse piezoelectric effect. Also it can be used for a pressure sensor according to the piezoelectric effect. But the output of a piezo-buzzer is a differential signal. In this study, we've made a system that can measure a real pressure by integration of output signal. According to our results, it could be found a possibility of application for pressure sensor by measurement of output characteristics when a piezo-buzzer was pressurized and depressurized, and by measuring of an error by means of the drift current of OP-Amp, etc..

  • PDF

Analytical Breakdown Voltages of $p^{+}n$ Junction in Power Semiconductor Devices (전력 반도체 $p^{+}n$ 접합의 해석적 항복전압)

  • Chung, Yong Sung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.10 s.340
    • /
    • pp.9-18
    • /
    • 2005
  • Analytical expressions for breakdown voltages of abrupt $p^{+}n$ junction of Si, GaAs, InP and In$In_{0.53}Ga_{0.47}AS$ were induced. Getting analytical breakdown voltages, effective ionization coefficients were extracted using lucky drift parameters of Marsland for each materials. The results of analytical breakdown voltages followed by ionization integral agreed well with experimental result within 10$\%$ in error for the doping concentration in the range of $10^{14}cm\;^{-3}\~5\times10\;^{17}cm\;^{-3}$.

Attitude Estimation of the Moving Bodies using the Low-Cost MEMS Sensor (저가형 MEMS 센서를 이용한 움직이는 물체의 자세 추정)

  • Heo, Oh-Chul;Choi, Goon-Ho;Park, Ki-Heon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.41-47
    • /
    • 2010
  • In this paper we suggest an improvement upon the previous method of estimating a body's attitude. This paper presents a method that overcomes the shortcomings of previous studies. Applying the method of separating the acceleration of gravity component from the accelerometer's output improves the performance of the attitude estimation and extends the scope. In order to apply the method of the attitude estimation in an actively moving body, a new acceleration value containing the acceleration of gravity is calculated. This paper also proposes the method which minimizes the estimation error in estimating the moving body's attitude which is changing rapidly. Finally, this paper suggests a method that detects the gyroscope's drift and compensates for this drift using accelerometer. Applying the method improves the performance of the attitude estimation.

Compensation of Thermal Errors for the CNC Machine Tools (II) - Analysis of Error Compensation Algorithm for the PC-NC Controller - (CNC 공작기계의 열변형 오차 보정 (II) - PC-NC제어기용 오차보정 알고리즘 분석 -)

  • 이재종;최대봉;박현구
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.214-219
    • /
    • 2001
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. In this study, the compensation device and temperature-based algorithm have been presented in order to compensate thermal error of machine tools under the real-time. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to compensate thermal characteristics under several operating conditions, experiments performed with five gap sensors and manufactured compensation device on the horizontal machining center.

  • PDF

A Study on the Low-Cost Fiber-Optic Gyroscope Using the Single Mode Fiber and Depolarizer (단일모드 광섬유와 편광소멸기를 이용한 저가형 광섬유 자이로스코프에 관한 연구)

  • Jang, Nam-Young;Ham, Hyung-Jae;Song, Hui-Young;Chio, Pyung-Suk;Eun, Jae-Jeong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.3
    • /
    • pp.179-187
    • /
    • 2008
  • In this paper, we carried out the performance evaluation of depolarized fiber optic gyroscope(D-FOG) that was designed and fabricated with the low-cost optical communication single mode fiber and depolarizer. In order to reduce the phase error of D-FOG, the circuit of stabilized current and temperature of the light source was made and the performance was analyzed. The current and the temperature stability of the fabricated stabilization circuit were less than $200{\mu}A$ and $0.0098^{\circ}C$, respectively. Also, the D-FOG's experimental result showed that the value of the dynamic range of rotated rate, the scale factor error with a good linearity, and the zero bias drift were ${\pm}50^{\circ}/s$, 2.8881%, and $19.49^{\circ}/h$, respectively. The results indicated that a low-cost FOG was able to fabricate which was more cost effective than conventional FOG with a high-cost high-birefringent polarization maintaining fiber.

  • PDF

Geolocation Error Analysis of KOMPSAT-5 SAR Imagery Using Monte-Carlo Simulation Method

  • Choi, Yoon Jo;Hong, Seung Hwan;Sohn, Hong Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.2
    • /
    • pp.71-79
    • /
    • 2019
  • Geolocation accuracy is one of the important factors in utilizing all weather available SAR satellite imagery. In this study, an error budget analysis was performed on key variables affecting on geolocation accuracy by generating KOMPSAT-5 simulation data. To perform the analysis, a Range-Doppler model was applied as a geometric model of the SAR imagery. The results show that the geolocation errors in satellite position and velocity are linearly related to the biases in the azimuth and range direction. With 0.03cm/s satellite velocity biases, the simulated errors were up to 0.054 pixels and 0.0047 pixels in the azimuth and range direction, and it implies that the geolocation accuracy is sensitive in the azimuth direction. Moreover, while the clock drift causes a geolocation error in the azimuth direction, a signal delay causes in the range direction. Monte-Carlo simulation analysis was performed to analyze the influence of multiple geometric error sources, and the simulated error was up to 3.02 pixels in the azimuth direction.

Compensation of SDINS Navigation Errors Using Line-Of-Sight Vector (시선벡터를 이용한 관성항법장치의 보정기법)

  • Lim, You-Chol;Yim, Jong-Bin;Lyou, Joon
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2521-2524
    • /
    • 2003
  • Since inertial sensor errors which increase with time are caused by initial orientation error and sensor errors (accelerometer bias and gyro drift bias), the accuracy of these devices, while still improving, is not adequate for many of today's high-precision, long-duration sea, aircraft, and long-range missile missions. This paper presents a navigation error compensation scheme for Strap-Down Inertial Navigation System (SDINS) using Line-Of-Sight(LOS) vector from star sensor. To be specific, SDINS error model and measurement equation are derived, and Kalman filter is implemented. Simulation results show the bounded-ness of position and attitude errors.

  • PDF

Study on flexure angle measurement of ring laser gryo and the improvement of flexure error (링레이저 자이로의 플렉셔 각도측정과 플렉셔 오차개선 연구)

  • 조민식;김광진;김정주
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.68-73
    • /
    • 2004
  • Flexure measurement of ring laser gyro was investigated by using an interferometer. A two-beam interferometer of Fiezo-fringe pattern obtained the flexure angle in 1-gravity acceleration and the higher acceleration environments. These environments were made with the addition of dummy mass to the ring laser gyro axis. The flexure angle change for 1-gravity acceleration change was measured as 2.37 arcsec/g with low repeatability error of 0.01 arcsec/g. The laser navigation system consisting of 3 flexure-reduced ring laser gyros showed the improvement of flexure error.

A Study on Perturbation Effect and Orbit Determination of Communication Satellite (통신위성에 작용하는 섭동력의 영향평가와 궤도결정)

  • Park, Soo-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.3
    • /
    • pp.157-164
    • /
    • 1992
  • This study concerns about the orbit prediction and orbit determination of Korean future communication satellite, called 'Moogunghwa", which will be motioned in the geo-stationary orbit. Perturbation effect on the satellite orbit due to nonspherical gravitation of the earth, gravitation of the sun and moon, radiation of sun, drag of the atmosphere was investigated. Cowell's method is used for orbit prediction. Orbit determination was performed by using Extended Kalman Filter which is suitable for real-time orbit determination. The result shows that the chacteristics of the satellite orbit has east-west and south-north drift. So the periodic control time and control value in the view of the periodic of error can be provided. The orbit determination demonstrated the effectiveness since the convergence performance on the positon and velocity error, and state error standard deviation is reasonable.able.

  • PDF

Orbit determination of moogunghwa satellite (무궁화위성의 궤도결정)

  • 박수홍;조겸래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.692-697
    • /
    • 1992
  • This study concerns about the orbit prediction and orbit determination of Korean future communication satellite, called "Moogunghwa", which will be motioned in the geo-stationary orbit. Perturbation effect on the satellite orbit due to nonspherical geopotential term, lunar and solar gravity, drag force of the atmosphere and solar radiation pressure was investigated. Cowell's method is used for orbit prediction. Orbit determination was performed by using EKF which is suitable for real-time orbit determination. The result shows that the characteristics of the satellite orbit has drift. So the periodic control time and control value in the view of the periodic of error can be provided. The orbit determination demonstrated the effectiveness since the convergence performance on the position and velocity error , and state error standard deviation is reasonable.easonable.

  • PDF