• 제목/요약/키워드: Drawing die

검색결과 377건 처리시간 0.022초

반도체 리드 프레임의 금형설계 자동화 시스템 개발에 관한 연구 (A Study on the Development of Computer Aided Die Design System for Lead Frame, Semiconductor)

  • 최재찬;김병민;김철;김재훈;김창봉
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.123-132
    • /
    • 1999
  • This paper describes a research work of developing computer-aided design of lead frame, semiconductor, with blanking operation which is very precise for progressive working. Approach to the system is based on the knowledge-based rules. Knowledge for the system is formulated from pasticity theories, experimental results and the empirical knowledge of field experts. This system has been written in AutoLISP on the AutoCAD using a personal computer and in I-DEAS Drafting Programming Language on the I-DEAS Master Series Drafting with Workstation, HP9000/715(64). Transference of data between AutoCAD and I-DEAS Master Series Drafting is accomplished by DXF(drawing exchange format) and IGES(initial graphics exchange specification) methods. This system is composed of five modules, which are input and shape treatment, production feasibility check, strip-layout, data-conversion and die-layout modules. The process planning and Die design system is designed by considering several factors, such as complexities of blank geometry, punch profiles, and the availability of a press equipment and standard parts. This system provides its efficiecy for strip-layout, and die design for lead frame, semiconductor.

  • PDF

쾌속 3차원 조형법과 유한요소해석을 연계한 소성가공 금형설계의 동시공학적 접근방법 (Concurrent Engineering Approach to the Die Design of Metal Forming Process using Rapid Prototyping and Finite Element Analysis)

  • Part, K.;Yoon, J.W.;Cho, J.R.
    • 한국정밀공학회지
    • /
    • 제13권8호
    • /
    • pp.146-154
    • /
    • 1996
  • In this work, rapid prototyping and three-dimensional finite element analysis are simultaneously applied to the die design of metal forming processes. Rapid prototyping is a new prototyping technology which produces three-dimensional part models directly from CAD data and has been extensively applied to various manufacturing processes. There are many types of rapid prototyping systems due to their building principles and materials. In this work, Stereolithography Apparatus(SLA), which is the most widely used rapidprototyping system, is introduced to manufacture the die set. For general preparation of STL file, which is the standard input file of rapid prototyping system, mesh data which are used in describing the die surface in finite element analysis are translated so that rapid prototyping and finite element analysis are dffectively connected. A die set for spider forging and a clover punch for deep drawing section are manufactured effciently using SLA prototypes, and metal forming experiments are carried out using them. Comparing the result of experiments with that of analyses, the processes can be predicted and designed successfully.

  • PDF

스테인리스 판재의 성형성 향상에 관한 연구 (A Study on the Improvement of Formability of Stainless Steel Sheets)

  • 배원병;허병우;김호윤;한정영
    • 소성∙가공
    • /
    • 제7권5호
    • /
    • pp.445-449
    • /
    • 1998
  • In order to obtain optimum process variables during the drawing of stainless steel sheets rectangular cup drawing tests were carried out with several technically available stainless steel sheets. As parameters on testing materials for die and punches lubrication and blank holding forces were selected. Testing parameters played an important role if the deformed material was thin. Effect of material properties on the deformation behaviors was also discussed by using testing parameters selected in this experiment. From the test results we suggest the appropriate conditions to be applicable to the actual manufacturing processes

  • PDF

딥 드로잉 공정에 미치는 영향인자에 관한 실험적 연구 (Experimental Study on the Parameters Affecting Deep Drawing Process)

  • 정동원;양형일;이승훈
    • 동력기계공학회지
    • /
    • 제7권2호
    • /
    • pp.61-65
    • /
    • 2003
  • Sheet metal forming process is a non-linearity problem which Is affected by various process variables, such as geometric shape of punch and die, frictional characteristic, etc.. Therefore, the knowledge of the influence of the process variables is needed in the design of sheet metal working processes. In this paper, deep drawing tests for blank holding force, punch speed and lubrication between sheet material and tool were carried out to investigate the influence upon sheet formability. Experimental results were discussed about the defects on the deformation behaviors during the forming process.

  • PDF

유한요소해석을 이용한 세장비가 큰 직사각컵 다단계 성형공정의 금형설계 - 아이어닝 해석과 실험적 검증 (Tool Design in a Multi-stage Rectangular Cup Drawing Process with the Large Aspect Ratio by the Finite Element Analysis - Ironing Analysis and Experimental Verifications)

  • 김세호;김승호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.85-88
    • /
    • 2001
  • Examination of the die design is carried out for a multi-stage rectangular cup drawing process with the large aspect ratio with the aid of the finite element analysis. The analysis considers the deep drawing process with the ironing process for the thickness control in the cup wall. Simulation is performed to investigate the deformation mechanism in the initial design and the modified design. The analysis clarifies that the irregular cross section and the irregular contact condition produces unfavorable deformation. The analysis results show that the modified design improves the quality of a deep-drawn product with the low possibility of failure. The analysis result also shows good agreement with the experimental one.

  • PDF

AZ31 마그네슘합금판의 온간 디프드로잉 성형성해석 (The Simulations on the Formability of AZ31 Magnesium Alloy Sheet in Warm Deep Drawing)

  • 강대민;황종관
    • 한국기계가공학회지
    • /
    • 제3권1호
    • /
    • pp.52-58
    • /
    • 2004
  • The material used is a commercial magnesium based alloy AZ31(Mg-3Al-1Zn)sheet with a thickness of 1.0mm. Uniaxial tension tests at warm temperature were carried out to investigate the material characteristics of K, m, and n. A warm drawing process with a local heating and cooling technique was developed to improve formability in this study with results of uniaxial tension tests because it is very difficult for Mg alloy to deform at room temperature by the conventional method. The die and blank holder were heated up, while the punch was water-cooled during deformation. FE simulations considering heat transfer were executed with Mg alloy to investigate the Improvement of deep drawability. For the assessment of improvement those were compare with the results of no considering heat transfer and room temperature.

  • PDF

딥 드로잉 공정에 미치는 영향인자에 관한 실험적 연구 (Experimental Study on the Parameters Affecting Deep Drawing Process)

  • 정동원;이승훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1593-1596
    • /
    • 2003
  • Sheet metal forming process is a non-linearity problem which is affected by various process variables, such as geometric shape of punch and die, frictional characteristic, etc.. Therefore, the knowledge of the influence of the process variables is needed in the design of sheet metal working processes. In this paper, deep drawing tests for blank holding force, punch speed and lubrication between sheet material and tool were carried out to investigate the influence upon sheet formability. Experimental results were discussed about the defects on the deformation behaviors during the forming process.

  • PDF

온간성형공법을 이용한 오일팬 드로잉공정 단축 (Reduction of Drawing Process in Warm Forming Steel Sheets using Oil Pan)

  • 최이천
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.88-94
    • /
    • 1999
  • This study is to investigate the effects of warm deep drawing with steel sheets of SCP3C and SCP1 for improving deep drawability. Experiments were carried out in various working conditions such as forming temperature and lubricantion. The effect of lubricantion and temperature on drawabillity of steel sheets as well as thickness distribution of drawn oil pan were examined and discussed. One step forming at room temperature and uniform distribution of thickness was achieved at optimum formability for lubricantion. The optimum forming temperature was obtained that both the die and the blankholder were heated to 10$0^{\circ}C$ while the punch was cooled by circulating coolant of $0^{\circ}C$.

  • PDF

다단인발공정에서 후미인장응력이 중심파괴에 미치는 영향 (Effect of Back Tension in Multi-pass Drawing on the Central Bursting Defect)

  • 이성원;김민철;심규하;전만수
    • 소성∙가공
    • /
    • 제21권5호
    • /
    • pp.291-297
    • /
    • 2012
  • In this paper, the effect of back tension in multi-pass drawing or wiredrawing on the central bursting defect is investigated using finite element predictions. A rigid-plastic finite element method was used together with the McClintock damage model. Central bursting defects under different back tension stress values ranging from 0% to 20% of the yield strength of the material were predicted and they were compared to understand the effect of the back tension stress values on the central bursting defect. It is found that the level of back tension has a strong influence on the cumulative damage. Thus, higher back tension raises the possibility of the central bursting defect occurring, even though it decreases the interfacial pressure between the die and the work piece.

비원형단면에 대한 판재 성형성(II) - 임의단면에 대하여 - (Formability of Sheet Metal in Noncircular Cup Drawing (ll) - for Arbitrary Cross Sections -)

  • 김민수;신재현;서대교
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3094-3104
    • /
    • 1993
  • The five punch and die sets are selected as the examples of arbitrary cross sections which have two opposite inclined sides. Two kinds of blank shapes are designed for all cross sections. One(h-b1.) is determined by slip-line theory and the other (G-b1.) is determined conventionally as the similar shapes with the cross sections which were used by Gopinathan. As a result of the experimental procedures, the superiority of the blank shapes designed by slip-line theory is verified in the limiting drawing ratio, the uniformity of cup height and the thickness distributions.