• Title/Summary/Keyword: Drawing Analysis

Search Result 1,554, Processing Time 0.025 seconds

Process Design of Multi-pass Shape Drawing Considering the Drawing Stress (인발응력을 고려한 다단 형상인발 공정설계)

  • Kim, S.M.;Lee, S.K.;Lee, C.J.;Kim, B.M.;Jeong, M.S.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.21 no.4
    • /
    • pp.265-270
    • /
    • 2012
  • In this study, a process design method for the multi-pass shape drawing is proposed with consideration of the drawing stress. First, the shape drawing load was calculated to evaluate the shape drawing stress, and the intermediate die shape was determined by using an electric field analysis and the average reduction ratio. In order to evaluate whether material yielding occurs at the die exit, the drawing stress was determined by using the calculated shape drawing load. Finally, FE-analysis and shape drawing experiments were conducted to validate the design of the multi-pass shape drawing process. From the results of the FE-analysis and shape drawing experiments, it was possible to produce a sound shape drawn product with the designed process. The dimensional tolerances of the product were within the allowable tolerances.

Prediction of Drawing Load in the Shape Drawing Process (이형인발공정 하중예측에 관한 연구)

  • Lee, T.K.;Lee, C.J.;Lee, S.K.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.323-328
    • /
    • 2009
  • The prediction of drawing load is very important in the drawing process. However, it is not easy to calculate the drawing load for the shape drawing process through a theoretical model because of a complex arbitrary final cross section shape. The purpose of this study is to predict drawing load in shape drawing process. The cross section of product is divided with small angle as much as similar with fan-shape. The drawing load of each section was calculated by theoretical model of round to round drawing process. And the shape drawing load was determined by summation of drawing load of each section. The effectiveness of the proposed method was verified through the FE analysis and shape drawing experiment. It had a good agreement between proposed method, FE analysis and experiment within about 3% errors.

Die Design of Drawing for the Copper Bus-bar (동부스바 인발 금형설계)

  • 권혁홍;이정로
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.82-88
    • /
    • 2002
  • Copper bus-bar is made by drawing process and used in many part of industry. Ohen design drawing die for copper bus-bar, design factor is focused on the deformation of die-land by drawing force and shrink fit. In this paper it is analyzed to determine shrink fit value by shrink fit analysis program which is used with APDL/UIDL language in a commercial FEM package, ANSYS. The shrink fit analysis has been developed that enables optimal desist of the dies taking into account the elastic deflections. Elastic deflection is generated in shrink fitting the die inserts and that caused by the stresses generated using DEFORM software for drawing process analysis. This data can be processed as load input data fir a finite element die-stress analysis. Process simulation and stress analysis are thus combined during the drawing die design. The stress analysis of the dies is used to determine optimized dimension of die-land.

A Study on the Copper Bus-bar Drawing Dies using APDL/UIDL (APDL/UIDL을 이용한 동부스바 인발금형에 관한 연구)

  • Kwon H.H.;Lee J.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.11a
    • /
    • pp.45-53
    • /
    • 2001
  • Copper bus-bar is made by drawing process and used in many part of industry. When design drawing die for copper bus-bar, design factor is focused on the deformation of die-land by drawing force and shrink fit. In this paper, to determine shrink fit value is analyzed by automatic shrink fit analysis program, APDL/UIDL language in a commercial FEM package, ANSYS, has been developed that enables optimal design of the dies taking into account the elastic deflections generated in shrink fitting the die inserts and that caused by the stresses generated in the process and by using DEFORM software for drawing process analysis. This data can be processed as load input data for a finite element die-stress analysis. Process simulation and stress analysis are thus combined during the drawing die design. The stress analysis of the dies is used to determine optimized dimension of die-land.

  • PDF

Analysis of Deformation of Brass Tube Drawn By Various Methods (인발 방법에 따른 황동관의 변형 해석)

  • ;Oh Kyu Hwan;Lee Dong Nyung
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.76-85
    • /
    • 1995
  • The general equation of homogeneous strin for tube drawing has been derived. This can be applied to the general tube drawing method for non-zero plug angle. Also, the derived equation can represent Blazynski's equations for the sinking and tube drawing with a constant plug diameter. The general tube drawing was divided into two steps, sinking and contact drawing zones. The derived equation can calculate the homogeneous strains of the two steps. The various tube drawing methods such as fixed tapered plug, fixed mandrel, fixed back tapered plug, and floating plug have been analysed by the equation and finite element analysis. From the FEM calculations, the total strains and drawing stresses are obtained and consequently the redundancy factor of various drawing methods was analysed. The fixed back tapered plug method showed the largest redundancy factor and the floating plug method had the largest drawing stress.

  • PDF

Elastic-Plastic Finite Element Analysis of Deep Drawings of Circular and Square Cups Considering Bending (굽힘을 고려한 원형 및 정사각형컵 딥드로잉 공정의 탄소성 유한요소해석)

  • 심현보;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1738-1750
    • /
    • 1994
  • Both cylindrical cup drawing and square cup drawing are analyzed using membrane analysis as well as shell analysis by the elastic-plastic finite element method. An incremental formulation incorporating the effect of large deformation and normal anisotropy is used for the analysis of elastic-plastic non-steady deformation. The computed results are compared with the existing experimental results to show the validity of the analysis. Comparisons are made in the punch load and distribution of thickness strain between the membrane analysis and the shell analysis for both cylindrical and square cup drawing processes. In punch load, both analyses show very little difference and also show generally good agreement with the experiment. For the cylindrical cup deep drawing, the computed thickness strain of a membrane analysis, however, shows a wide difference with the experiment. In the shell analysis, the thickness strain shows good agrement with the experiment. For the square cup deep drawing, both membrane and shell analyses show a wide difference with experiment, this may be attributable to the ignorance of the shear deformation. Concludingly, it has been shown that the membrane approach shows a limitation for the deep drawing process in which the effect of bending is not negligible and more exact information on the thickness strain distribution is required.

Pass Redesign for Reduction of Wire Breakage in the Wet Wire Drawing Process (습식 신선공정의 단선율 저감을 위한 패스 재설계)

  • Lee S. K.;Kim M. A.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.11a
    • /
    • pp.71-77
    • /
    • 2002
  • The Production of fine wire through wet wire drawing process with appropriate pass schedule would be impossible without understanding of relationship among many process parameters. Therefore, this paper investigates the relationship among process parameters of wet wire drawing process. In this study, it is possible to obtain the important basic data that can be used in the pass schedule of multi-pass wet wire drawing process. In order to verify the effectiveness of the analysis, pass redesign was performed based on the result of analysis to reduce the wire breakage. The wire breakage between the conventional pass schedule and the redesigned pass schedule was compared by the FE analysis and the wet win drawing experiment.

  • PDF

Optimal Design in cylindrical cup drawing by forming analysis (원형컵 드로잉의 성형해석에 의한 최적설계)

  • 정완진;김종호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.393-396
    • /
    • 2003
  • A systematic investigation for the process design in deep drawing is necessary to improve the quality of drawn cups. This study concentrates mainly on the influence of process design strategy on the product quality. Several types of process design were chosen from initial blank of 100mm in diameter to make final cup of 50mm in diameter. Forming analysis are carried out to find out optimal design in terms of drawing force. We assume that the case which shows minimum drawing force in the subsequent operations is the best case. Through experiments it is found that the case which shows minimum drawing force also results in minimum drawing force and better product quality than other case. Thus, it is shown that this design strategy is very effective in the improvement of quality in drawn cups.

  • PDF

Fabrication of Ultra-fine Rhodium Wire Using Multi-pass Wire Drawing Process (다단 신선공정을 이용한 초극세 로듐 와이어 제조)

  • Lee, S.K.;Lee, S.Y.;Lee, I.K.;Hwang, S.K.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.275-280
    • /
    • 2019
  • The aim of this study is to fabricate an ultra-fine pure rhodium wire using multi-pass wire drawing process. To manufacture $30{\mu}m$ ultra-fine rhodium wire from the initial $50{\mu}m$ wire, a multi-pass wire drawing process was designed based on the uniform reduction ratio theory. The elastic-plastic finite element analysis was then conducted to validate the efficacy of the designed process. The drawing load, drawing stress, and the distribution of the effective strain were evaluated using the finite element analysis. Finally, the wire drawing experiment was performed to validate the designed wire drawing process. From the results of the experiment, the diameter of the final drawn wire was found to be $29.85{\mu}m$.

Analysis of the Axisymmetric Hydro-Mechanical Deep Drawing Process by Using the Finite Element Method (유한 요소법을 이용한 축대칭 하이드로 미케니칼 디프 드로잉 공정의 해석)

  • 양동열;김한경;이항수;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.873-882
    • /
    • 1992
  • The study is concerned with the rigid-plastic element analysis for axisymmetric hydromechanical deep drawing in which the fluid flow influences the metal deformation. Due to the fluid pressure acting on the sheet material hydromechanical deep drawing is distinguished from the conventional deep drawing processes. In considering the pressure effect, the governing equation for fluid pressure is solved and the result is reflected on the global stiffness matrix. The solution procedure consists of two stages ; i.e., initial bulging of the sheet surface before the initiation of steady fluid flow in the flange and fluid-lubricated stage. The problem is decoupled between fluid analysis and analysis of solid deformation by deformation by iterative feedback of mutual computed results. The corresponding experiments are carried out for axisymmetric hydro-mechanical deep drawing of annealled aluminium sheet as well as for deep drawing. It has been shown from the experiments that the limit drawing ratio for hydro-mechanical deep drawing is improved as compared with deep drawing. The computed results are in good agreement with the experiment for variation of punch head and chamber pressure with respect to the punch travel and for distribution of thicknees strain. It is thus shown that the present method of analysis can be effectively applied to the analysis of axisymmetric hydro-mechanical deep drawing processes.