• Title/Summary/Keyword: Drag User Interface

Search Result 18, Processing Time 0.021 seconds

Dial Menu User Interface Using Touch Screen (터치스크린을 이용한 다이얼 메뉴 유저 인터페이스)

  • Choi, Jung-Hwan;Kim, Youn-Woo;Jang, Hyun-Su;Eom, Young-Ik
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.584-589
    • /
    • 2008
  • The in put system using the touch screen directly makes the input signals by the contact on the screen without the assistance of peripherals such as a pen or hands. These kinds of input systems using the flexible hands is maximizing suppleness and intuition of the input rather than those systems using a keyboard or a mouse which are moving a cursor or typing a word. However, using hands for an input may give rise to a mistake in control. And there are few interfaces utilizing the touch screen. Incorrectness and insufficiency of the interface are the weak point of the touch screen systems. In this paper, we propose the dial menu user interface for the mobile devices using touch screen for an efficient input. In this method, it consists of 2 states(Inactive states, Active states) and 4 actions(Rotation, Zoom in, and Zoom out, and Click). The intuitive control utilizing the suggested method overcomes the incorrect pointing, weak point of the touch screen system, and boosts the searching menu by utilizing the drag function of the touch screen.

  • PDF

Introduction to Development Tool for Windows Based Real-Time Power Plant Simulators (Windows 환경의 발전소 실시간 시뮬레이터 개발 툴 소개)

  • 조병학
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.10a
    • /
    • pp.90-94
    • /
    • 1998
  • 한국전력공사 전력연구원은 10년간의 시뮬레이터 개발 경험을 바탕으로 Windows(NT)환경의 시뮬레이터 개발 툴인 Powersim을 독자적으로 개발하고 이를 이용하여 화력발전소 DCS(Distributed Control System) 검증용 시뮬레이터를 개발하고 있다. PowerSim은 GMB(Graphic Model Builder)를 갖춘 국내 최초의 시뮬레이터 개발툴로 다양한 발전소 기기모델과 강사조작반기능을 갖추고 있다. PowerSim은 완벽한 GUI (Graphic User Interface)환경을 지원하여 User가 Icon Drag 방식으로 시뮬레이션 도면(SimDiagram)을 그리면 그래픽 에디터에서 출력된 각종 기기의 접속상태를 나타내는 Netlist를 변환기가 처리하여 기기의 연결상태를 정규화하고 Scheduler는 기기모델(일종의 Subroutine)을 Netlist에 맞게 Scheduling하여 Executive에서 실행 가능한 형태로 만드는 모든 과정이 자동화되어 있다. 따라서, 개발자는 발전소 P&ID(Pipe and Instrument Drawing)에 기초하여 Simdiagram을 그리고 발전소 데이터를 입력하는 것만으로 실시간 시뮬레이터를 구현할 수 있다. 본 논문에서는 PowerSim의 개요와 GMB(Graphic Model Builder) 및 강사조작반에 적용된 GUI 환경과 실시간 Executive에 대해 다룬다.

  • PDF

NUI/NUX of the Virtual Monitor Concept using the Concentration Indicator and the User's Physical Features (사용자의 신체적 특징과 뇌파 집중 지수를 이용한 가상 모니터 개념의 NUI/NUX)

  • Jeon, Chang-hyun;Ahn, So-young;Shin, Dong-il;Shin, Dong-kyoo
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.11-21
    • /
    • 2015
  • As growing interest in Human-Computer Interaction(HCI), research on HCI has been actively conducted. Also with that, research on Natural User Interface/Natural User eXperience(NUI/NUX) that uses user's gesture and voice has been actively conducted. In case of NUI/NUX, it needs recognition algorithm such as gesture recognition or voice recognition. However these recognition algorithms have weakness because their implementation is complex and a lot of time are needed in training because they have to go through steps including preprocessing, normalization, feature extraction. Recently, Kinect is launched by Microsoft as NUI/NUX development tool which attracts people's attention, and studies using Kinect has been conducted. The authors of this paper implemented hand-mouse interface with outstanding intuitiveness using the physical features of a user in a previous study. However, there are weaknesses such as unnatural movement of mouse and low accuracy of mouse functions. In this study, we designed and implemented a hand mouse interface which introduce a new concept called 'Virtual monitor' extracting user's physical features through Kinect in real-time. Virtual monitor means virtual space that can be controlled by hand mouse. It is possible that the coordinate on virtual monitor is accurately mapped onto the coordinate on real monitor. Hand-mouse interface based on virtual monitor concept maintains outstanding intuitiveness that is strength of the previous study and enhance accuracy of mouse functions. Further, we increased accuracy of the interface by recognizing user's unnecessary actions using his concentration indicator from his encephalogram(EEG) data. In order to evaluate intuitiveness and accuracy of the interface, we experimented it for 50 people from 10s to 50s. As the result of intuitiveness experiment, 84% of subjects learned how to use it within 1 minute. Also, as the result of accuracy experiment, accuracy of mouse functions (drag(80.4%), click(80%), double-click(76.7%)) is shown. The intuitiveness and accuracy of the proposed hand-mouse interface is checked through experiment, this is expected to be a good example of the interface for controlling the system by hand in the future.

Development of an aerodynamic design program for a small wind turbine blade (소형풍력발전기용 블레이드 공력설계 프로그램 개발)

  • Yoon, Jin-Yong;Paek, In-Su;Yoo, Neung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2013
  • An aerodynamic design tool was developed for small wind turbine blades based on the blade element momentum theory. The lift and drag coefficients of blades that are needed for aerodynamic blade design were obtained in real time from the Xfoil program developed at University of Illinois. While running, the developed tool automatically accesses the Xfoil program, runs it with proper aerodynamic and airfoil properties, and finally obtains lift and drag coefficients. The obtained aerodynamic coefficients are then used to find out optimal twist angles and chord lengths of the airfoils. The developed tool was used to design a wind turbine blade using low Reynolds number airfoils, SG6040 and SG6043 to have its maximum power coefficient at a specified tip speed ratio. The performance of the blade was verified by a commercial code well known for its prediction accuracies.

ARtalet for Digilog Book Authoring Tool - Authoring 3D Objects Properties (디지로그 북 저작도구 ARtalet - 3 차원 객체 속성 저작)

  • Ha, Tae-Jin;Lee, Youg-Ho;Woo, Woon-Tack
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.314-318
    • /
    • 2008
  • This paper is about an authoring interface for augmented/mixed reality based book, specifically authoring 3D objects properties of Digilog book. We pursue even normal users with non-professional knowledge for programming can make the Digilog book easily. An authoring interface 3D object properties includes a manipulator as an input device and 3D contents authoring parts. As an interface design metaphor, existing GUI interface, already familiar to computer users, are referenced. The manipulator generates continuous/discrete input signal are necessary for authoring interface. Contents authoring part performs selection, positioning, scaling, coloring, copy of virtual objects using the input signal of the manipulator. Also users can exploit already existing GUI interface metaphor including pointing, click, drag and drop, and copy techniques with the manipulator. Therefore we think our AR authoring system can support rapid and intuitive modification of properties of virtual objects.

  • PDF

A Study on Virtual Machine Design Simulator (가상 기구설계 시뮬레이터에 관한 연구)

  • Yim, Hong-Jae;Ju, Jae-Hwan;Sung, Sang-Jun;Jang, Si-Youl;Lee, Kee-Sung;Shin, Dong-Hoon;Jeong, Jae-Il;Lim, Si-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1559-1563
    • /
    • 2007
  • This paper presents a virtual machine design simulation program. Kinematics of various mechanisms can be modeled with 3 dimensional geometry and actuators. CAD data for any machine component can be easily imported in STL format. Machine components are assembled with kinematic joints simply by drag and drop function in virtual graphic simulator. Interference and collision of any component with other components can be identified during the motion simulation. Graphic user interface program is developed using Microsoft Direct X code. A precision micro stage system is demonstrated with the proposed virtual machine design simulator.

  • PDF

Developing VR-based Sailor Training Platform Authoring Tool (가상현실 기반 선원 훈련 플랫폼 저작도구 개발)

  • Jung, Jinki;Lee, Hyeopwoo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.181-185
    • /
    • 2016
  • In this paper we propose a VR-based Sailor Training Platform Authoring Tool which efficiently trains sailors in immersive ways. Proposed authoring tool consists of virtual environment reconstruction that imports real ship indoor environment into virtual environment and script editing which is able to implement various scenarios in emergency based on just drag-and-drop interface. The aim of importing real ship environment and supporting various VR devices is to enhance immersiveness and training so that trainees can deal with serious emergency events. Also the usefulness of the interface enables to reduce the cost of making training materials. Throughout scenario editing interface, the proposed authoring tool supports the editing of multi-user scenario and setting individual task for the evaluation.

  • PDF

Optimum Design of Aerodynamic Shape of Cascade with Rotor-Stator Interactions (정익과 동익의 상호작용을 고려한 익렬의 공력 형상 최적 설계)

  • Cho, J. K.;Park, W. G.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.40-45
    • /
    • 2002
  • Since the previous cut-and-try design algorithm requires much cost and time, the automated design technique with the CFD and optimum design algorithm has recently been concerned. In this work, the Navier-Stokes equation was solved to gain more detailed viscous flow information of cascade with rotor-stator interactions. The H-grid embedded by O-grid was generated to obtain more accurate solution by eliminating the branch cut of H-grid near airfoil surface. To handle the relative motion of the rotor to the stationary stator, the sliding multiblock method was applied and the cubic-spline interpolation was used on the block interface boundary. To validate present procedure, the time-averaged aerodynamic loads were compared with experimeatal data. A good agreement was obtained. The Modified Method of Feasible Direction (MMFD) was used to carry out the sensitivity analysis of the change of aerodynamic performance by the changes of the cascade geometry. The present optimization of the cascade gave a dramatic reduction of the drag while the lift maintains at the value within the user-specified tolerance.