• Title/Summary/Keyword: Drag Model

Search Result 716, Processing Time 0.046 seconds

Flow Characteristics According to Velocity Conditions of Cylinder Boundary Under Low Reynolds Number (저 레이놀즈 수에서 실린더 경계 유속조건에 따른 흐름 특성)

  • Song, Chang Geun;Seo, Il Won;Kim, Tae Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2267-2275
    • /
    • 2013
  • Existing conventional model for analysis of shallow water flow just assumed the internal boundary condition as free-slip, which resulted in the wrong prediction about the velocity, vorticity, water level, shear stress distribution, and time variation of drag and lift force around a structure. In this study, a finite element model that can predict flow characteristics around the structure accurately was developed and internal boundary conditions were generalized as partial slip condition using slip length concept. Laminar flow characteristics behind circular cylinder were analyzed by varying the internal boundary conditions. The simulation results of (1) time variations of longitudinal and transverse velocities, and vorticity; (2) wake length; (3) vortex shedding phenomena by slip length; (4) and mass conservation showed that the vortex shedding had never observed and laminar flow like creeping motion was occurred under free-slip condition. Assignment of partial slip condition changed the velocity distribution on the cylinder surface and influenced the magnitude of the shear stress and the occurrence of vorticity so that the period of vortex shedding was reduced compared with the case of no slip condition. The maximum mass conservation error occurred in the case of no slip condition, which had the value of 0.73%, and there was 0.21 % reduction in the maximum mass conservation error by changing the internal boundary condition from no slip to partial slip condition.

Study on the Intensive Catching Method of Anchovy for Live Bait-I. An Experiment on the Towing Method of Holding Creel (활멸치의 집약적 생산수단에 관한 연구 - I 축양조의 예인방법에 관한 실험)

  • Lee, Byoung-Gee;Yang, Yong-Rim;Su, Young-Tae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.15 no.1
    • /
    • pp.5-16
    • /
    • 1979
  • At the holding of live anchovies which will be used as bait for the skipjack fishing, it is necessary to transrer the holding creel to the holding ground from the long distanted fishing ground. Usually, the creel made with net webbing and shaped like pound, was towed with a tow rope fastened to the front fringe or it, when two serious problems were found. The one was that the leading flap or the webbing of creel was drifted backward by the drag and caused to decrease the volume of the creel and made anchovies mortal. The other was that much time were spent to tow creels for long distance with slow speed, whereas to tow fast made anchovies worn out and caused them mortal. To prevent these defect, the authors carried out a model experiment in a circular flowing tank with a 1/15 scale model creel by four different arrangement of towing, and found out two suitable method, then these two methods were experimented in the sea with full rigged creel, and found the most suitable method out. To decrease the interior current speed of the creel even if it was towed fast, the apron which made by the same webbing of the creel body was enclosed the leading flap of creel, when the interior current speed showed the 35 to 40 percent of towing speed, whereas it showed 50 to 55 percent without apron.

  • PDF

Thermoelastic Aspects of the San Andreas Faults under Very Low Strength (낮은 강도를 갖는 산 안드레아 단층의 열탄성 특성)

  • Park, Moo-Choon;Han, Uk
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.315-322
    • /
    • 2000
  • In this study, the data used for the models were a set of 56 geologic estimates of long-term fault slip rates. The hest models were those in which mantle drag was convergent on the Transverse Ranges in the San Andreas fault system, and faults had a low friction (${\mu}$= 0.3). It is clearly important to decide whether these cases of low strength are local anomalies or whether they are representative. Furthermore, it would be helpful to determine fault strength in as many tectonic settings as possible. Analysis of data was considered by unsuspected sources of pore pressure, or even to question the relevance of the friction law. To contribute to the solution of this problem, three attempts were tried to apply finite element method that would permit computational experiments with different hypothesized fault rheologies. The computed model has an assumed rheology and plate tectonic boundary conditions, and produces predictions of present surface velocity, strain rate, and stress. The results of model will be acceptably close to reality in its predictions of mean fault slip rates, stress directions and geodetic data. This study suggests some implications of the thermoelastic characteristics to interpret the relationship with very low strength of San Andreas fault system.

  • PDF

Numerical Investigation of Turbulence Structure and Suspended Sediment Transport in Vegetated Open-Channel Flows (식생된 개수로에서 난류 구조와 부유사 이동 현상의 수치해석)

  • Gang, Hyeong-Sik;Choe, Seong-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.5
    • /
    • pp.581-592
    • /
    • 2000
  • Turbulence structure and suspended sediment transport capacity in vegetated open-channel flows are investigated numerically in the present paper. The $\textsc{k}-\;\varepsilon$ model is employed for the turbulence closure. Mean velocity and turbulence characteristics including turbulence intensity, Reynolds stress, and production and dissipation of turbulence kinetic energy are evaluated and compared with measurement data available in the literature. The numerical results show that mean velocity is diminished due to the drag provided by vegetation, which results in the reduction of turbulence intensity and Reynolds stress. For submerged vegetation, the shear at the top of vegetation dominates turbulence production, and the turbulence production within vegetation is characterized by wakes. For emergent condition, it is observed that the turbulence generation is dominated by wakes within vegetation. In general, simulated profiles compares favorably to measured data. Computed values of eddy viscosity are used to solve the conservation equation for suspended sediment, yielding sediment concentration more uniform over the depth compared with the one in the plain channel. The simulation reveals that the suspended load decreases as the vegetation density increases and the suspended load increases as the particle diameter decreases for the same vegetation density.

  • PDF

Statistical Calibration and Validation of Mathematical Model to Predict Motion of Paper Helicopter (종이 헬리콥터 낙하해석모델의 통계적 교정 및 검증)

  • Kim, Gil Young;Yoo, Sung Bum;Kim, Dong Young;Kim, Dong Seong;Choi, Joo Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.751-758
    • /
    • 2015
  • Mathematical models are actively used to reduce the experimental expenses required to understand physical phenomena. However, they are different from real phenomena because of assumptions or uncertain parameters. In this study, we present a calibration and validation method using a paper helicopter and statistical methods to quantify the uncertainty. The data from the experiment using three nominally identical paper helicopters consist of different groups, and are used to calibrate the drag coefficient, which is an unknown input parameter in both analytical models. We predict the predicted fall time data using probability distributions. We validate the analysis models by comparing the predicted distribution and the experimental data distribution. Moreover, we quantify the uncertainty using the Markov Chain Monte Carlo method. In addition, we compare the manufacturing error and experimental error obtained from the fall-time data using Analysis of Variance. As a result, all of the paper helicopters are treated as one identical model.

Aerodynamic Force Measurements and PIV Study for the Twisting Angle of a Swift Wing Model (칼새 날개의 비틀림 각에 대한 공력측정 및 PIV 연구)

  • Bok, Jung Jin;Chang, Jo Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.765-772
    • /
    • 2015
  • Aerodynamic force measurements and phase-locked PIV study were carried out to check the bio-mimetic MAV applicability of a swift flight. Two-rotational DOF robotic wing model and blowing-type wind tunnel were employed. The amplitude of twist angle were ${\pm}0$, ${\pm}5$, ${\pm}10$, and ${\pm}20$ deg. and stroke angles were manipulated by simple harmonic function with out-of-phase in regards to the stroke motion. It is acknowledged that the time-varying lift coefficients in accordance with the change of the twist angle did not result in any noticeable differences, just the small decrease and delay. However, the drag exhibited that the small change of the twist angle can produce large thrust. These findings imply why a swift uses small twist angle during flight. The PIV results displayed that the delay of aerodynamic forces is highly associated with the vortical structures around the wing. It is therefore indicated that a process of designing a swift-based Micro Air Vehicle should take the twist angle into consideration, as the essential parameter.

Dynamic Modeling and Simulation of a Towing Rope using Multiple Finite Element Method (다물체 요소이론을 이용한 예인줄 동역학의 모델링 및 시뮬레이션)

  • Yoon, Hyeon-Kyu;Lee, Hong-Seok;Park, Jong-Kyu;Kim, Yeon-Gyu
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.339-347
    • /
    • 2012
  • After towing rope connecting a barge to a tug was subdivided into multiple finite elements, then those dynamic models was established using Newton's second law and considering the external force and moment such as tension, drag, Coriolis force, gravity, buoyancy, and impact due to free surface acting on each element. While the previous research on the model of towing rope considered only translation, five-degree-of-freedom equations of motion except roll based on the body-fixed frame were established in this paper. All elements are connected by a spring and a damper, and the stiffness of the spring was set as the equivalent value of the real rope. In order to confirm the established multiple finite element model, various scenarios such as freely falling of towing rope in the air and above the free surface, accelerating of a tug which tows a barge connected by towing rope, and sinusoidal moving of a tug were set up and simulated. As the results, the trajectories of the tug, the barge, and the towing rope showed good tendencies to the ones of real expected situations.

Control of the flow past a sphere in a turbulent boundary layer using O-ring

  • Okbaz, Abdulkerim;Ozgoren, Muammer;Canpolat, Cetin;Sahin, Besir;Akilli, Huseyin
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.1-20
    • /
    • 2022
  • This research work presents an experimental study's outcomes to reveal the impact of an O-ring on the flow control over a sphere placed in a turbulent boundary layer. The investigation is performed quantitatively and qualitatively using particle image velocimetry (PIV) and dye visualization. The sphere model having a diamater of 42.5 mm is located in a turbulent boundary layer flow over a smooth plate for gap ratios of 0≤G/D≤1.5 at Reynolds number of 5 × 103. Flow characteristics, including patterns of instantaneous vorticity, streaklines, time-averaged streamlines, velocity vectors, velocity fluctuations, Reynolds stress correlations, and turbulence kinetic energy (), are compared and discussed for a naked sphere and spheres having O-rings. The boundary layer velocity gradient and proximity of the sphere to the flat plate profoundly influence the flow dynamics. At proximity ratios of G/D=0.1 and 0.25, a wall jet is formed between lower side of the sphere and flat plate, and velocity fluctuations increase in regions close to the wall. At G/D=0.25, the jet flow also induces local flow separations on the flat plate. At higher proximity ratios, the velocity gradient of the boundary layer causes asymmetries in the mean flow characteristics and turbulence values in the wake region. It is observed that the O-ring with various placement angles (𝜃) on the sphere has a considerable alteration in the flow structure and turbulence statistics on the wake. At lower placement angles, where the O-ring is closer to the forward stagnation point of the sphere, the flow control performance of the O-ring is limited; however, its impact on the flow separation becomes pronounced as it is moved away from the forward stagnation point. At G/D=1.50 for O-ring diameters of 4.7 (2 mm) and 7 (3 mm) percent of the sphere diameter, the -ring exhibits remarkable flow control at 𝜃=50° and 𝜃=55° before laminar flow separation occurrence on the sphere surface, respectively. This conclusion is yielded from narrowed wakes and reductions in turbulence statistics compared to the naked sphere model. The O-ring with a diameter of 3 mm and placement angle of 50° exhibits the most effective flow control. It decreases, in sequence, streamwise velocity fluctuations and length of wake recovery region by 45% and 40%, respectively, which can be evaluated as source of decrement in drag force.

Depth Control and Sweeping Depth Stability of the Midwater Trawl (중층트롤의 깊이바꿈과 소해심도의 안정성)

  • 장지원
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.9 no.1
    • /
    • pp.1-18
    • /
    • 1973
  • For regulating the depth of midwater trawl nets towed at the optimum constant speed, the changes in the shape of warps caused by adding a weight on an arbitrary point of the warp of catenary shape is studied. The shape of a warp may be approximated by a catenary. The resultant inferences under this assumption were experimented. Accordingly feasibilities for the application of the result of this study to the midwater trawl nets were also discussed. A series of experiments for basic midwater trawl gear models in water tank and a couple of experiments of a commercial scale gears at sea which involve the properly designed depth control devices having a variable attitude horizontal wing were carried out. The results are summarized as follows: 1. According to the dimension analysis the depth y of a midwater trawl net is introduced by $$y=kLf(\frac{W_r}{R_r},\;\frac{W_o}{R_o},\;\frac{W_n}{R_n})$$) where k is a constant, L the warp length, f the function, and $W_r,\;W_o$ and $W_n$ the apparent weights of warp, otter board and the net, respectively, 2. When a boat is towing a body of apparent weight $W_n$ and its drag $D_n$ by means of a warp whose length L and apparent weight $W_r$ per unit length, the depth y of the body is given by the following equation, provided that the shape of a warp is a catenary and drag of the warp is neglected in comparison with the drag of the body: $$y=\frac{1}{W_r}\{\sqrt{{D_n^2}+{(W_n+W_rL)^2}}-\sqrt{{D_n^2+W_n}^2\}$$ 3. The changes ${\Delta}y$ of the depth of the midwater trawl net caused by changing the warp length or adding a weight ${\Delta}W_n$_n to the net, are given by the following equations: $${\Delta}y{\approx}\frac{W_n+W_{r}L}{\sqrt{D_n^2+(W_n+W_{r}L)^2}}{\Delta}L$$ $${\Delta}y{\approx}\frac{1}{W_r}\{\frac{W_n+W_rL}{\sqrt{D_n^2+(W_n+W_{r}L)^2}}-{\frac{W_n}{\sqrt{D_n^2+W_n^2}}\}{\Delta}W_n$$ 4. A change ${\Delta}y$ of the depth of the midwater trawl net by adding a weight $W_s$ to an arbitrary point of the warp takes an equation of the form $${\Delta}y=\frac{1}{W_r}\{(T_{ur}'-T_{ur})-T_u'-T_u)\}$$ Where $$T_{ur}^l=\sqrt{T_u^2+(W_s+W_{r}L)^2+2T_u(W_s+W_{r}L)sin{\theta}_u$$ $$T_{ur}=\sqrt{T_u^2+(W_{r}L)^2+2T_uW_{r}L\;sin{\theta}_u$$ $$T_{u}^l=\sqrt{T_u^2+W_s^2+2T_uW_{s}\;sin{\theta}_u$$ and $T_u$ represents the tension at the point on the warp, ${\theta}_u$ the angle between the direction of $T_u$ and horizontal axis, $T_u^2$ the tension at that point when a weights $W_s$ adds to the point where $T_u$ is acted on. 5. If otter boards were constructed lighter and adequate weights were added at their bottom to stabilize them, even they were the same shapes as those of bottom trawls, they were definitely applicable to the midwater trawl gears as the result of the experiments. 6. As the results of water tank tests the relationship between net height of H cm velocity of v m/sec, and that between hydrodynamic resistance of R kg and the velocity of a model net as shown in figure 6 are respectively given by $$H=8+\frac{10}{0.4+v}$$ $$R=3+9v^2$$ 7. It was found that the cross-wing type depth control devices were more stable in operation than that of the H-wing type as the results of the experiments at sea. 8. The hydrodynamic resistance of the net gear in midwater trawling is so large, and regarded as nearly the drag, that sweeping depth of the gear was very stable in spite of types of the depth control devices. 9. An area of the horizontal wing of the H-wing type depth control device was $1.2{\times}2.4m^2$. A midwater trawl net of 2 ton hydrodynamic resistance was connected to the devices and towed with the velocity of 2.3 kts. Under these conditions the depth change of about 20m of the trawl net was obtained by controlling an angle or attack of $30^{\circ}$.

  • PDF

The hydrodynamic characteristics of the canvas kite - 2. The characteristics of the triangular canvas kite - (캔버스 카이트의 유체역학적 특성에 관한 연구 - 2. 삼각형 캔버스 카이트의 특성 -)

  • Bae, Bong-Seong;Bae, Jae-Hyun;An, Heui-Chun;Lee, Ju-Hee;Shin, Jung-Wook
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.3
    • /
    • pp.206-213
    • /
    • 2004
  • As far as an opening device of fishing gears is concerned, applications of a kite are under development around the world. The typical examples are found in the opening device of the stow net on anchor and the buoyancy material of the trawl. While the stow net on anchor has proved its capability for the past 20 years, the trawl has not been wildly used since it has been first introduced for the commercial use only without sufficient studies and thus has revealed many drawbacks. Therefore, the fundamental hydrodynamics of the kite itself need to ne studied further. Models of plate and canvas kite were deployed in the circulating water tank for the mechanical test. For this situation lift and drag tests were performed considering a change in the shape of objects, which resulted in a different aspect ratio of rectangle and trapezoid. The results obtained from the above approaches are summarized as follows, where aspect ratio, attack angle, lift coefficient and maximum lift coefficient are denoted as A, B, $C_L$ and $C_{Lmax}$ respectively : 1. Given the triangular plate, $C_{Lmax}$ was produced as 1.26${\sim}$1.32 with A${\leq}$1 and 38$^{\circ}$B${\leq}$42$^{\circ}$. And when A${\geq}$1.5 and 20$^{\circ}$${\leq}$B${\leq}$50$^{\circ}$, $C_L$ was around 0.85. Given the inverted triangular plate, $C_{Lmax}$ was 1.46${\sim}$1.56 with A${\leq}$1 and 36$^{\circ}$B${\leq}$38$^{\circ}$. And When A${\geq}$1.5 and 22$^{\circ}$B${\leq}$26$^{\circ}$, $C_{Lmax}$ was 1.05${\sim}$1.21. Given the triangular kite, $C_{Lmax}$ was produced as 1.67${\sim}$1.77 with A${\leq}$1 and 46$^{\circ}$B${\leq}$48$^{\circ}$. And when A${\geq}$1.5 and 20$^{\circ}$B${\leq}$50$^{\circ}$, $C_L$ was around 1.10. Given the inverted triangular kite, $C_{Lmax}$ was 1.44${\sim}$1.68 with A${\leq}$1 and 28$^{\circ}$B${\leq}$32$^{\circ}$. And when A${\geq}$1.5 and 18$^{\circ}$B${\leq}$24$^{\circ}$, $C_{Lmax}$ was 1.03${\sim}$1.18. 2. For a model with A=1/2, an increase in B caused an increase in $C_L$ until $C_L$ has reached the maximum. Then there was a tendency of a very gradual decrease or no change in the value of $C_L$. For a model with A=2/3, the tendency of $C_L$ was similar to the case of a model with A=1/2. For a model with A=1, an increase in B caused an increase in $C_L$ until $C_L$ has reached the maximum. And the tendency of $C_L$ didn't change dramatically. For a model with A=1.5, the tendency of $C_L$ as a function of B was changed very small as 0.75${\sim}$1.22 with 20$^{\circ}$B${\leq}$50$^{\circ}$. For a model with A=2, the tendency of $C_L$ as a function of B was almost the same in the triangular model. There was no considerable change in the models with 20$^{\circ}$B${\leq}$50$^{\circ}$. 3. The inverted model's $C_L$ as a function of increase of B reached the maximum rapidly, then decreased gradually compared to the non-inverted models. Others were decreased dramatically. 4. The action point of dynamic pressure in accordance with the attack angle was close to the rear area of the model with small attack angle, and with large attack angle, the action point was close to the front part of the model. 5. There was camber vertex in the position in which the fluid pressure was generated, and the triangular canvas had large value of camber vertex when the aspect ratio was high, while the inverted triangular canvas was versa. 6. All canvas kite had larger camber ratio when the aspect ratio was high, and the triangular canvas had larger one when the attack angle was high, while the inverted triangluar canvas was versa.