• 제목/요약/키워드: Downward

Search Result 1,533, Processing Time 0.023 seconds

Single Bubble Dynamic Behavior in AL2O3/H2O Nanofluid on Downward-Facing Heating Surface

  • Wang, Yun;Wu, Junmei
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.915-924
    • /
    • 2016
  • After a severe accident to the nuclear reactor, the in-vessel retention strategy is a key way to prevent the leakage of radioactive material. Nanofluid is a steady suspension used to improve heat-transfer characteristics of working fluids, formed by adding solid particles with diameters below 100nm to the base fluids, and its thermal physical properties and heat-transfer characteristics are much different from the conventional working fluids. Thus, nanofluids with appropriate nanoparticle type and volume concentration can enhance the heat-transfer process. In this study, the moving particle semi-implicit method-meshless advection using flow-directional local grid method is used to simulate the bubble growth, departure, and sliding on the downward-facing heating surface in pure water and nanofluid (1.0 vol.% $Al_2O_3/H_2O$) flow boiling processes; additionally, the bubble critical departure angle and sliding characteristics and their influence are also investigated. The results indicate that the bubble in nanofluid departs from the heating surface more easily and the critical departure inclined angle of nanofluid is greater than that of pure water. In addition, the influence of nanofluid on bubble sliding is not significant compared with pure water.

EXPERIMENTAL INVESTIGATION OF CONVECTIVE HEAT TRANSFER IN A NARROW RECTANGULAR CHANNEL FOR UPWARD AND DOWNWARD FLOWS

  • Jo, Daeseong;Al-Yahia, Omar S.;Altamimi, Raga'i M.;Park, Jonghark;Chae, Heetaek
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.195-206
    • /
    • 2014
  • Heat transfer characteristics in a narrow rectangular channel are experimentally investigated for upward and downward flows. The experimental data obtained are compared with existing data and predictions by many correlations. Based on the observations, there are differences from others: (1) there are no different heat transfer characteristics between upward and downward flows, (2) most of the existing correlations under-estimate heat transfer characteristics, and (3) existing correlations do not predict the high heat transfer in the entrance region for a wide range of Re. In addition, there are a few heat transfer correlations applicable to narrow rectangular channels. Therefore, a new set of correlations is proposed with and without consideration of the entrance region. Without consideration of the entrance region, heat transfer characteristics are expressed as a function of Re and Pr for turbulent flows, and as a function of Gz for laminar flows. The correlation proposed for turbulent and laminar flows has errors of ${\pm}18.25$ and ${\pm}13.62%$, respectively. With consideration of the entrance region, the heat transfer characteristics are expressed as a function of Re, Pr, and $z^*$ for both laminar and turbulent flows. The correlation for turbulent and laminar flows has errors of ${\pm}19.5$ and ${\pm}22.0%$, respectively.

Characteristics of Wind Pressure Distributions Acting on Solar Collector Plate (태양열 집열판에 작용하는 풍압계수 분포 특성)

  • You, Ki-Pyo;Kim, Young-Moon;You, Jang-Youl
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.2
    • /
    • pp.67-73
    • /
    • 2013
  • This paper attempted to bridge this gap by identifying the number of flat-plate solar collectors. The characteristics of wind pressure coefficients acting on flat-plate solar collectors which are most widely used were investigated for various wind direction. Findings from this study found that the location where the maximum wind pressure coefficient occurred in the solar collector was the edge of the collector. Regarding the characteristics according to the number of collectors, the paper found that downward wind pressure coefficient of the lower edge of the collector was higher than the upward wind pressure coefficient of the upper edge of the collector in the basic module (1 piece). However, as the number of collectors increases, the upward wind pressure coefficient of the upper edge become higher than the downward wind pressure coefficient of the lower edge. Finally yet important, it was found that the location of the maximum wind pressure coefficient was changed according to the number of solar collectors.

Enhancement of Downward-Facing Saturated Boiling Heat Transfer by the Cold Spray Technique

  • Sohag, Faruk A.;Beck, Faith R.;Mohanta, Lokanath;Cheung, Fan-Bill;Segall, Albert E.;Eden, Timothy J.;Potter, John K.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.124-133
    • /
    • 2017
  • In-vessel retention by passive external reactor vessel cooling under severe accident conditions is a viable approach for retention of radioactive core melt within the reactor vessel. In this study, a new and versatile coating technique known as "cold spray" that can readily be applied to operating and advanced reactors was developed to form a microporous coating on the outer surface of a simulated reactor lower head. Quenching experiments were performed under simulated in-vessel retention by passive external reactor vessel cooling conditions using test vessels with and without cold spray coatings. Quantitative measurements show that for all angular locations on the vessel outer surface, the local critical heat flux (CHF) values for the coated vessel were consistently higher than the corresponding CHF values for the bare vessel. However, it was also observed for both coated and uncoated surfaces that the local rate of boiling and local CHF limit vary appreciably along the outer surface of the test vessel. Nonetheless, results of this intriguing study clearly show that the use of cold spray coatings could enhance the local CHF limit for downward-facing boiling by > 88%.

Improving TCP Performance for Downward Vertical Handover (하향식 수직적 핸드오버를 위한 무선 TCP 성능 향상 기법과 성능 분석)

  • Kim, Ho-Jin;Lee, Su-Kyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10B
    • /
    • pp.638-643
    • /
    • 2007
  • Interconnecting wireless local area networks (WLANs) with third generation (3G) cellular networks has become an issue of great interest. However, a Vertical Handover (VHO) causes an abrupt change in link bandwidth. Due to such a change, TCP triggers unnecessary fast retransmission during a Downward VHO (DVHO) from a cellular network to a WLAN, causing throughput degradation. Thus, we propose a new reordering mechanism for DVHO that suppresses unnecessary retransmission due to the spurious duplicate acknowledgments. We analytically investigate the throughput of TCP in the literature and our proposed scheme. Through the numerical and simulation results, it is shown that our proposed TCP achieves better performance in terms of throughput, compared with Nodupack with SACK.

An experimental study on the recovery of diesel oil using a belt type skimmer (벨트식 유회수기를 사용한 디젤유 회수에 관한 실험적 연구)

  • 송동업;윤경환
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.132-143
    • /
    • 1997
  • Removal of spilled oil over the sea and the river has become one of the urgent problem in these days. Removing oil using mechanical devices are recommended because chemical dispersion can cause the secondary contamination in the environment. In the present study a series of experiments were carried out to study the effect of working conditions of a belt type skimmer on the rate of recovery for the spilled oil. The oil chosen for the present experiment was diesel oil. Three different situations, namely, upward, downward, up-and-downward pickup have been investigated for various contact angles, belt speeds and oil thicknesses. The results show that the rate of oil recovery for the case of downward pickup with a contact angle of 45.deg. shows the highest among all the conditions. For the removal of spilled diesel oil the optimal belt speed can be found as the critical value to reach the saturated pickup rate for a given oil thickness. The recovery rate of bunker C oil shows 4-6 times higher than that for diesel oil. And the optimal belt speed for bunker C oil can be found less than that for diesel oil for the same slick thickness.

  • PDF

Performance of Downward-blowing Air Curtain m Heating Space Considering External Wind Condition (외부바람의 영향을 고려한 난방공간에서의 하향토출 에어커튼의 성능)

  • Sung, Sun-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.7
    • /
    • pp.417-423
    • /
    • 2009
  • Air curtains are widely used for gates of shopping mall, warehouse, cold stores and refrigerated display cabinets. The purpose of the air curtain is to reduce the infiltration of outdoor air and heat loss from the air conditioning space to ambient air. Design data for the air curtain given by previous researchers do not mention the influence of wind speed. Thus, this paper presents a performance of single jet air curtain in heating space when the wind blows toward the opening space of the building. A numerical simulation is used to study the influence of various parameters on the efficiency of the downward-blowing air curtain device which is installed inside of the wall above the door. The performance of the air curtain is evaluated by sealing efficiency which provides the assessment of the energy savings. A new safety factor is also proposed for determination of air curtain jet velocity under the various wind conditions.

Effect of bidirectional internal flow on fluid.structure interaction dynamics of conveying marine riser model subject to shear current

  • Chen, Zheng-Shou;Kim, Wu-Joan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.57-70
    • /
    • 2012
  • This article presents a numerical investigation concerning the effect of two kinds of axially progressing internal flows (namely, upward and downward) on fluid.structure interaction (FSI) dynamics about a marine riser model which is subject to external shear current. The CAE technology behind the current research is a proposed FSI solution, which combines structural analysis software with CFD technology together. Efficiency validation for the CFD software was carried out first. It has been proved that the result from numerical simulations agrees well with the observation from relating model test cases in which the fluidity of internal flow is ignorable. After verifying the numerical code accuracy, simulations are conducted to study the vibration response that attributes to the internal progressive flow. It is found that the existence of internal flow does play an important role in determining the vibration mode (/dominant frequency) and the magnitude of instantaneous vibration amplitude. Since asymmetric curvature along the riser span emerges in the case of external shear current, the centrifugal and Coriolis accelerations owing to up- and downward internal progressive flows play different roles in determining the fluid.structure interaction response. The discrepancy between them becomes distinct, when the velocity ratio of internal flow against external shear current is relatively high.

Prediction of critical heat flux for narrow rectangular channels in a steady state condition using machine learning

  • Kim, Huiyung;Moon, Jeongmin;Hong, Dongjin;Cha, Euiyoung;Yun, Byongjo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1796-1809
    • /
    • 2021
  • The subchannel of a research reactor used to generate high power density is designed to be narrow and rectangular and comprises plate-type fuels operating under downward flow conditions. Critical heat flux (CHF) is a crucial parameter for estimating the safety of a nuclear fuel; hence, this parameter should be accurately predicted. Here, machine learning is applied for the prediction of CHF in a narrow rectangular channel. Although machine learning can effectively analyze large amounts of complex data, its application to CHF, particularly for narrow rectangular channels, remains challenging because of the limited flow conditions available in existing experimental databases. To resolve this problem, we used four CHF correlations to generate pseudo-data for training an artificial neural network. We also propose a network architecture that includes pre-training and prediction stages to predict and analyze the CHF. The trained neural network predicted the CHF with an average error of 3.65% and a root-mean-square error of 17.17% for the test pseudo-data; the respective errors of 0.9% and 26.4% for the experimental data were not considered during training. Finally, machine learning was applied to quantitatively investigate the parametric effect on the CHF in narrow rectangular channels under downward flow conditions.

The Sensitivity of the Extratropical Jet to the Stratospheric Mean State in a Dynamic-core General Circulation Model (성층권 평균장이 중위도 제트에 미치는 영향: 역학코어 모형 실험)

  • Lee, Jae-Won;Son, Seok-Woo;Kim, Seo-Yeon;Song, Kanghyun
    • Atmosphere
    • /
    • v.31 no.2
    • /
    • pp.171-183
    • /
    • 2021
  • The sensitivity of the extratropical jet to the stratospheric mean state is investigated by conducting a series of idealized numerical experiments using a dynamic-core general circulation model. When the polar stratosphere is forced to be cold, the extratropical jet, defined by the 850-hPa zonal wind, tends to shift poleward without much change in its intensity. The opposite is also true when the polar stratosphere becomes warm. This jet response, however, is not exactly linear. A poleward jet shift under a cold vortex is much weaker than an equatorward jet shift under a warm vortex. The jet intensity change is also larger under a warm vortex. This result indicates that the stratosphere-troposphere downward coupling is more efficient for the warm and weak polar vortex. This finding is consistent with a stronger downward coupling during stratospheric sudden warming than vortex intensification events in the Northern Hemisphere winter, possibly providing a clue to better understand the observed stratosphere-troposphere downward coupling.