• 제목/요약/키워드: Downregulation

검색결과 530건 처리시간 0.029초

Cholera Toxin Disrupts Oral Tolerance via NF-κB-mediated Downregulation of Indoleamine 2,3-dioxygenase Expression

  • Kim, Kyoung-Jin;Im, Suhn-Young
    • 대한의생명과학회지
    • /
    • 제23권3호
    • /
    • pp.175-184
    • /
    • 2017
  • Cholera toxin (CT) is an ADP-ribosylating bacterial exotoxin that has been used as an adjuvant in animal studies of oral immunization. The mechanisms of mucosal immunogenicity and adjuvanticity of CT remain to be established. In this study, we investigated the role of indoleamine 2,3-dioxygenase (IDO), which participates in the induction of immune tolerance, in CT-mediated breakdown of oral tolerance. When IDO-deficient ($IDO^{-/-}$) mice and their littermates were given oral ovalbumin, significant changes in antibody responses, footpad swelling and $CD4^+$ T cell proliferation were not observed in $IDO^{-/-}$ mice. Feeding of CT decreased IDO expression in mesenteric lymph nodes (MLN) and Peyer's patch (PP). CT-induced downregulation of IDO expression was reversed by inhibitors of nuclear factor-kappa B (NF-${\kappa}B$), pyrrolidine dithiocarbamate and p50 small interfering RNA. IDO expression was downregulated by the NF-${\kappa}B$ inducers lipopolysaccharide and tumor necrosis factor-${\alpha}$. CT dampened IDO activity and mRNA expression in dendritic cells from MLN and PP. These data indicate that CT disrupts oral tolerance by activating NF-${\kappa}B$, which in turn downregulates IDO expression. This study betters the understanding of the molecular mechanism underlying CT-mediated abrogation of oral tolerance.

Downregulation of Foxe1 by HR suppresses Msx1 expression in the hair follicles of HrHp mice

  • Choi, Jee-Hyun;Kim, Byong-Kyu;Kim, Jeong-Ki;Lee, Hwa-Young;Park, Jong-Keun;KimYoon, Sung-Joo
    • BMB Reports
    • /
    • 제44권7호
    • /
    • pp.478-483
    • /
    • 2011
  • Hairless (HR), a transcriptional cofactor, is highly expressed in the skin and brain. To characterize the effects of HR expression in the skin, we examined its capacity for transcriptional regulation of its target genes in mouse skin and keratinocytes. We found that Foxe1 mRNA expression was suppressed in HR-overexpressing skin, as well as in HR-expressing keratinocytes. In turn, Msx1 expression was downregulated contingent on Foxe1 downregulation in skin and keratinocytes. We also found that expression of Sfrp1 was also correlated with that of Foxe1. Further investigation of the mechanisms involved in the transcriptional regulation of these genes will facilitate our understanding of the relationship among genes involved in hair follicle morphogenesis and cycling.

The effects of Caffeoylserotonin on inhibition of melanogenesis through the downregulation of MITF via the reduction of intracellular cAMP and acceleration of ERK activation in B16 murine melanoma cells

  • Kim, Hye-Eun;Ishihara, Atsushi;Lee, Seong-Gene
    • BMB Reports
    • /
    • 제45권12호
    • /
    • pp.724-729
    • /
    • 2012
  • In this study, we evaluated the anti-melanogenesis effects of Caffeoylserotonin (CaS) in B16 melanoma cells. Treatment with CaS reduced the melanin content and tyrosinase (TYR) activity in B16 melanoma cells in a dose-dependent manner. CaS inhibited the expression of melanogenesis-related proteins, including microphthalmia-associated transcription factor (MITF), TYR, and tyrosinase-related protein-1 (TRP-1), but not TRP-2. ${\alpha}$-MSH is known to interact with melanocortin 1 receptor (MC1R) thus activating adenylyl cyclase and increasing intracellular cyclic AMP (cAMP) levels. Furthermore, cAMP activates extracellular signal-regulated kinase 2 (ERK2) via phosphorylation, which phosphorylates MITF, thereby targeting the transcription factor to proteasomes for degradation. The CaS reduced intracellular cAMP levels to unstimulated levels and activated ERK phosphorylation within 30 min. The ERK inhibitor PD98059 abrogated the suppressive effect of CaS on ${\alpha}$-MSH-induced melanogenesis. Based on this study, the inhibitory effects of CaS on melanogenesis are derived from the downregulation of MITF signaling via the inhibition of intracellular cAMP levels, as well as acceleration of ERK activation.

Epigenetic silencing of olfactomedin-4 enhances gastric cancer cell invasion via activation of focal adhesion kinase signaling

  • Guo, Li-Li;He, Zhao-Cai;Yang, Chang-Qing;Qiao, Pei-Tang;Yin, Guo-Ling
    • BMB Reports
    • /
    • 제48권11호
    • /
    • pp.630-635
    • /
    • 2015
  • Downregulation of olfactomedin-4 (OLFM4) is associated with tumor progression, lymph node invasion and metastases. However, whether or not downregulation of OLFM4 is associated with epigenetic silencing remains unknown. In this study, we investigate the role of OLFM4 in gastric cancer cell invasion. We confirm the previous result that OLFM4 expression is increased in gastric cancer tissues and decreases with an increasing number of metastatic lymph nodes, which are associated with OLFM4 promoter hypermethylation. Overexpression of OLFM4 in gastric cancer cells had an inhibitory effect on cell invasion. Furthermore, we found that focal adhesion kinase (FAK) was negatively correlated with OLFM4 in regards to lymph node metastasis in gastric cancer tissues. Also, inhibition of FAK induced by OLFM4 knockdown resulted in a decrease in cell invasion. Thus, our study demonstrates that epigenetic silencing of OLFM4 enhances gastric cancer cell invasion via activation of FAK signaling.

Probiotic Conjugated Linoleic Acid Mediated Apoptosis in Breast Cancer Cells by Downregulation of NF-κB

  • Kadirareddy, Rashmi Holur;GhantaVemuri, Sujana;Palempalli, Uma Maheswari Devi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권7호
    • /
    • pp.3395-3403
    • /
    • 2016
  • Conjugated linoleic acid, a functional lipid, produced from Lactobacillus plantarum (LP-CLA), has been demonstrated to possess apoptotic activity. The anti-proliferative and apoptotic potential of LP-CLA was here evaluated in vitro using the MDA-MB-231 human breast cancer cell line as a model system. Proliferation of MDA-MB-231 cells was inhibited with increasing concentrations of LP-CLA with altered morphological features like cell detachment, rounding of cells and oligonucleosomal fragmentation of DNA. Flow cytometry confirmed the apoptotic potential of LP-CLA by ANNEXIN V/PI double staining. Furthermore, outcome results indicated that the apoptosis was mediated by downregulation of the NF-${\kappa}B$ pathway which in turn acted through proteasome degradation of $I{\kappa}B{\alpha}$, inhibition of p65 nuclear translocation, release of cytochrome-C from mitochondria and finally overexpression of Bax protein. Thus, conjugated linoleic acid, a natural product derived from probiotics, could therefore be a possible potential chemotherapeutic agent due to its apoptotic activity against estrogen receptor negative breast cancer cells.

Notch Signal Transduction Induces a Novel Profile of Kaposi's Sarcoma-Associated Herpesvirus Gene Expression

  • Chang Hee-Soon
    • Journal of Microbiology
    • /
    • 제44권2호
    • /
    • pp.217-225
    • /
    • 2006
  • Kaposi's sarcoma-associated herpesvirus (KSHV) RTA transcription factor is recruited to its responsive elements through interaction with RBP-Jk that is a downstream transcription factor of the Notch signaling pathway that is important in development and cell fate determination. This suggests that KSHV RTA mimics cellular Notch signal transduction to activate viral lytic gene expression. Here, I demonstrated that unlike other B lymphoma cells, KSHV -infected primary effusion lymphoma BCBL1 cells displayed the constitutive activation of ligand-mediated Notch signal transduction, evidenced by the Jagged ligand expression and the complete proteolytic process of Notch receptor I. In order to investigate the effect of Notch signal transduction on KSHV gene expression, human Notch intracellular (hNIC) domain that constitutively activates RBP-Jk transcription factor activity was expressed in BCBL1 cells, TRExBCBL1-hNIC, in a tetracycline inducible manner. Gene expression profiling showed that like RTA, hNIC robustly induced expression of a number of viral genes including KS immune modulatory gene resulting in downregulation of MHC I and CD54 surface expression. Finally, the genetic analysis of KSHV genome demonstrated that the hNIC-mediated expression of KS during viral latency consequently conferred the downregulation of MHC I and CD54 surface expression. These results indicate that cellular. Notch signal transduction provides a novel expression profiling of KSHV immune deregulatory gene that consequently confers the escape of host immune surveillance during viral latency.

Changes in Apoptosis-related Gene Expression Induced by Repression of FGFR1 by RNA Interference in Embryonic Fibroblasts and Cancerous Cells from Chicken

  • Lee, Sang-In;Lee, Bo-Ram;Hwang, Young-Sun;Rengaraj, Deivendran;Han, Jae-Yong
    • Journal of Animal Science and Technology
    • /
    • 제52권6호
    • /
    • pp.521-527
    • /
    • 2010
  • Fibroblast growth factor receptor 1 (FGFR1) plays roles in angiogenesis, wound healing, and embryonic development via the regulation of cell proliferation, differentiation, and survival. It is well known that ectopic expression of FGFR1 is associated with cancer development. To characterize the function of FGFR1 in the normal and cancer cell lines DF-1 and DT40, respectively, we performed FGFR1 knockdown by RNA interference. In the DT40 cells, FGFR1 knockdown induced upregulation of FGFR2 and FGFR3 expression, downregulation of pro-apoptosis-related genes, and upregulation of anti-apoptosis-related genes. However, in DF-1 cells, FGFR1 knockdown induced upregulation of pro-apoptosis-related genes and downregulation of anti-apoptosis-related genes. Our data suggest that repression of FGFR1 induced upregulation of other FGF receptors and anti-apoptosis-related genes in cancer cells and pro-apoptosis-related genes in normal cells.

Anti-cancer Activity of the Leave Extracts of Rodgersia podophylla through β-catenin Proteasomal Degradation in Human Cancer Cells

  • Kim, Jeong Dong;Park, Su Bin;Kim, Ha Na;Jeong, Jin Boo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.68-68
    • /
    • 2019
  • In this study, we evaluated the effect of Rodgersia podophylla leave extracts (RPL) on ${\beta}$-catenin level in human cancer cells. RPL dose-dependently inhibited cell proliferation in SW480, A549, MDA-MB-231, PC-3 and AsPC-1 cells. RPL dramatically decreased ${\beta}$-catenin protein level in all cancer cells. However, decreased level of ${\beta}$-catenin mRNA expression was observed in A549 and AsPC-1 cells. In addition, RPL dramatically attenuated cyclin D1 mRNA expression in all cancer cells. MG132 decreased the downregulation of ${\beta}$-catenin protein level induced by RPL in all cancer cells, while RPL-induced downregulation of ${\beta}$-catenin was inhibited by the inhibition of $GSK-3{\beta}$ by LiCl in MDA-MB-231 cells. RPL phosphorylated ${\beta}$-catenin and $GSK-3{\beta}$. In addition, the inhibition of $GSK-3{\beta}$ by LiCl attenuated RPL-induced ${\beta}$-catenin phosphorylation. Based on these findings, RPL may be a potential candidate for the development of chemopreventive or therapeutic agents for human cancer.

  • PDF

Anti-Melanogenic Effect of Dendropanax Morbiferus and Its Active Components via Protein Kinas e A/Cyclic Adenos ine Monophosphate-Responsive Binding Protein-and p38 Mitogen-Activated Protein Kinase-Mediated Microphthalmia-Associated Transcription Factor Downregulation

  • Bohyun Yun;Ji Soo Kim;Jung Up Park
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2022년도 추계학술대회
    • /
    • pp.104-104
    • /
    • 2022
  • Dendropanax morbiferus H. Lev has been reported to have some pharmacologic activities and also interested in functional cosmetics. We found that the water extract of D. morbiferus leaves significantly inhibited tyrosinase activity and melanin formation in α-melanocyte stimulating hormone (MSH)-induced B16-F10 cells. D. morbiferus reduced melanogenesis-related protein levels, such as microphthalmia? associated transcription factor (MITF), TRP-1, and TRP-2, without any cytotoxicity. Two active ingredients of D. morbiferus, (10E)-9,16-dihydroxyoctadeca-10,17-dien-12,14-diynoate (DMW-1) and (10E)-(?)-10,17-octadecadiene-12,14-diyne-1,9,16-triol (DMW-2) were identified by testing the anti-melanogenic effects and then by liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis. DMW-1 and DMW-2 significantly inhibited melanogenesis by the suppression of protein kinase A (PKA)/cyclic AMP (cAMP)-responsive binding protein (CREB) and p38 MAPK phosphorylation. DMW-1 showed a better inhibitory effect than DMW-2 in α-MSH-induced B16-F10 cells. D. morbiferus and its active component DMW-1 inhibited melanogenesis through the downregulation of cAMP, p-PKA/CREB, p-p38, MITF, TRP-1, TRP-2, and tyrosinase. These results indicate that D. morbiferus and DMW-1 may be useful ingredients for cosmetics and therapeutic agents for skin hyperpigmentation disorders.

  • PDF

Tumor antigen PRAME is a potential therapeutic target of p53 activation in melanoma cells

  • Yong-Kyu Lee;Hyeon Ho Heo;Nackhyoung Kim;Ui-Hyun Park;Hyesook Youn;Eun-Yi Moon;Eun-Joo Kim;Soo-Jong Um
    • BMB Reports
    • /
    • 제57권6호
    • /
    • pp.299-304
    • /
    • 2024
  • Upregulation of PRAME (preferentially expressed antigen of melanoma) has been implicated in the progression of a variety of cancers, including melanoma. The tumor suppressor p53 is a transcriptional regulator that mediates cell cycle arrest and apoptosis in response to stress signals. Here, we report that PRAME is a novel repressive target of p53. This was supported by analysis of melanoma cell lines carrying wild-type p53 and human melanoma databases. mRNA expression of PRAME was downregulated by p53 overexpression and activation using DNA-damaging agents, but upregulated by p53 depletion. We identified a p53-responsive element (p53RE) in the promoter region of PRAME. Luciferase and ChIP assays showed that p53 represses the transcriptional activity of the PRAME promoter and is recruited to the p53RE together with HDAC1 upon etoposide treatment. The functional significance of p53 activation-mediated PRAME downregulation was demonstrated by measuring colony formation and p27 expression in melanoma cells. These data suggest that p53 activation, which leads to PRAME downregulation, could be a therapeutic strategy in melanoma cells.