• Title/Summary/Keyword: Downregulation

Search Result 536, Processing Time 0.025 seconds

IGF-I Exerts an Anti-inflammatory Effect on Skeletal Muscle Cells through Down-regulation of TLR4 Signaling

  • Lee, Won-Jun
    • IMMUNE NETWORK
    • /
    • v.11 no.4
    • /
    • pp.223-226
    • /
    • 2011
  • Although exercise-induced growth factors such as Insulin-like growth factor-I (IGF-I) are known to affect various aspects of physiology in skeletal muscle cells, the molecular mechanism by which IGF-I modulates anti-inflammatory effects in these cells is presently unknown. Here, we showed that IGF-I stimulation suppresses the expression of toll-like receptor 4 (TLR4), a key innate immune receptor. A pharmacological inhibitor study further showed that PI3K/Akt signaling pathway is required for IGF-I-mediated negative regulation of TLR4 expression. Furthermore, IGF-I treatment reduced the expression of various NF-${\kappa}B$-target genes such as TNF-${\alpha}$ and IL-6. Taken together, these findings indicate that the anti-inflammatory effect of exercise may be due, at least in part, to IGF-I-induced suppression of TLR4 and subsequent downregulation of the TLR4-dependent inflammatory signaling pathway.

Critical Roles of Deubiquitinating Enzymes in the Nervous System and Neurodegenerative Disorders

  • Das, Soumyadip;Ramakrishna, Suresh;Kim, Kye-Seong
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.203-214
    • /
    • 2020
  • Post-translational modifications play major roles in the stability, function, and localization of target proteins involved in the nervous system. The ubiquitin-proteasome pathway uses small ubiquitin molecules to degrade neuronal proteins. Deubiquitinating enzymes (DUBs) reverse this degradation and thereby control neuronal cell fate, synaptic plasticity, axonal growth, and proper function of the nervous system. Moreover, mutations or downregulation of certain DUBs have been found in several neurodegenerative diseases, as well as gliomas and neuroblastomas. Based on emerging findings, DUBs represent an important target for therapeutic intervention in various neurological disorders. Here, we summarize advances in our understanding of the roles of DUBs related to neurobiology.

Inhibition of Nelumbo nucifera Stamens-derived Kaempferol on FcεRI-mediated GATA-1 Expression

  • Shim, Sun-Yup
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.350-353
    • /
    • 2019
  • The transcription factor, GATA-1, plays an important role in the $Fc{\varepsilon}RI$ ${\alpha}$ chain expression in mast cells and basophils. This study was conducted to investigate the downregulation of the transcription factor GATA-1 by kaempferol isolated from Nelumbo nucifera stamens in $Fc{\varepsilon}RI$-mediated allergic reactions. Kaempferol inhibited $Fc{\varepsilon}RI$-mediated histamine release. Western blotting analysis and RT-PCR showed that the protein and mRNA expression of GATA-1 was suppressed by kaempferol in a dose-dependent manner. These results suggest that kaempferol may inactivate basophils by downregulating the $Fc{\varepsilon}RI$ ${\alpha}$ chain expression via the inhibition of the GATA-1 expression.

Inhibitory Activity of Wild-Simulated Ginseng against Non-Alcoholic Fatty Liver Disease in HepG-2 Cells

  • So Jung Park;Yurry Um;Min Yeong Choi;Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.43-43
    • /
    • 2023
  • In this study, we investigated in vitro inhibitory activity of wild-simulated ginseng (WSG) against non-alcoholic fatty liver disease using HepG-2 cells. T0901317 treatment increased the lipid accumulation in HepG-2 cells, but WSG treatment inhibited T0901317-mediated lipid accumulation. In addition, WSG downregulated T0901317-mediated expression of SREBP-1c, ACC, FAS and SCD-1 protein. In addition, WSG increased the phosphorylation level of LKB1 and AMPK. Compound C treatment blocked WSG-mediated downregulation of SREBP-1c protein. In conclusion, WSG is considered to inhibit the accumulation of lipids and triglycerides in HepG-2 cells by inducing the activation of LKB1 and AMPK successively, thereby reducing the expression of FAS, ACC, and SCD-1 through suppression of SREBP-1c expression.

  • PDF

Methylanthranilate, a Food Fragrance Attenuates Skin Pigmentation through Downregulation of Melanogenic Enzymes by cAMP Suppression

  • Heui-Jin Park;Kyuri Kim;Eun-Young Lee;Prima F. Hillman;Sang-Jip Nam;Kyung-Min Lim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.231-239
    • /
    • 2024
  • Methyl anthranilate (MA) is a botanical fragrance used in food flavoring with unexplored potential in anti-pigment cosmetics. MA dose-dependently reduced melanin content without affecting cell viability, inhibited dendrite elongation and melanosome transfer in the co-culture system of human melanoma cells (MNT-1) and human keratinocyte cell line (HaCaT), and downregulated melanogenic genes, including tyrosinase, tyrosinase-related protein 1 and 2 (TRP-1, TRP-2). Additionally, MA decreased cyclic adenosine monophosphate (cAMP) production and exhibited a significant anti-pigmentary effect in MelanodermTM. These results suggest that MA is a promising anti-pigmentary agent for replacing or complementing existing anti-pigmentary cosmetics.

Deciphering Macrophage Phenotypes upon Lipid Uptake and Atherosclerosis

  • Jihye Lee;Jae-Hoon Choi
    • IMMUNE NETWORK
    • /
    • v.20 no.3
    • /
    • pp.22.1-22.21
    • /
    • 2020
  • In the progression of atherosclerosis, macrophages are the key immune cells for foam cell formation. During hyperlipidemic condition, phagocytic cells such as monocytes and macrophages uptake oxidized low-density lipoproteins (oxLDLs) accumulated in subintimal space, and lipid droplets are accumulated in their cytosols. In this review, we discussed the characteristics and phenotypic changes of macrophages in atherosclerosis and the effect of cytosolic lipid accumulation on macrophage phenotype. Due to macrophage plasticity, the inflammatory phenotypes triggered by oxLDL can be re-programmed by cytosolic lipid accumulation, showing downregulation of NF-κB activation followed by activation of anti-inflammatory genes, leading to tissue repair and homeostasis. We also discuss about various in vivo and in vitro models for atherosclerosis research and next generation sequencing technologies for foam cell gene expression profiling. Analysis of the phenotypic changes of macrophages during the progression of atherosclerosis with adequate approach may lead to exact understandings of the cellular mechanisms and hint therapeutic targets for the treatment of atherosclerosis.

MicroRNA-200a/210 Controls Proliferation and Osteogenic Differentiation of Human Adipose Tissue Stromal Cells (MicroRNA-200a/210의 인체 지방 유래 중간엽 줄기세포 골분화 및 증식 조절 기전)

  • Kim, Young Suk;Park, Hee Jeong;Shin, Keun Koo;Lee, Sun Young;Bae, Yong Chan;Jung, Jin Sup
    • Journal of Life Science
    • /
    • v.27 no.7
    • /
    • pp.767-782
    • /
    • 2017
  • MicroRNAs control the differentiation and proliferation of human adipose tissue-derived stromal cells (hADSCs). However, the role of miR-200a and miR210 on the osteogenic differentiaton of hADSCs has not been determined. hADSCs were isolated from human adipose tissues. Direct binding of mircoRNA to target mRNAs was determined by luciferase assay of the constructs containing putative microRNA binding sites within 3' untranslated region of target mRNAs. Overexpression of miR-200a increased the proliferation and osteogenic differentiation of hADSCs, while causing downregulation of the levels of ZEB2. Inhibition of miR-200a with antisense RNAs inhibited the proliferation and osteogenic differentiation of hADSCs. Overexpression of miR-210 was found to inhibit the proliferation of hADSCs but increase the osteogenic differentiation, while causing downregulation of the levels of IGFBP3. Inhibition of miR-210 with antisense RNAs increased the proliferation but inhibited the osteogenic differentiation of hADSCs. Analysis of the luciferase activity of the constructs containing the miR-200a target site within the ZEB2 3' region and the miR-210 target site within the IGFBP3 3' region revealed lower activity in the miR-200a- or miR-210-transfected hADSCs than in control miRNA-transfected hADSCs. Downregulation of ZEB2 or IGFBP3 in the hADSCs showed similar effects on both their proliferation and osteogenic differentiation with that of miR-200a and miR-210 overexpression, respectively. The results of the current study indicate that miR-200a and miR-210 regulate the osteogenic differentiation and proliferation of hADSCs through the direct targeting of IGFBP3 and ZEB2, respectively.

The Decreased Expression of Fbxw7 E3 Ligase Mediated by Cancer Upregulated Gene 2 Confers Cancer Stem Cell-like Phenotypes (CUG2 유전자에 의하여 감소된 FBXW7 E3 ligase 발현이 유사-종양줄기세포 표현형을 유도)

  • Yawut, Natpaphan;Kim, Namuk;Budluang, Phatcharaporn;Cho, Il-Rae;Kaowinn, Sirichat;Koh, Sang Seok;Kang, Ho Young;Chung, Young-Hwa
    • Journal of Life Science
    • /
    • v.32 no.4
    • /
    • pp.271-278
    • /
    • 2022
  • The detailed mechanism by which cancer upregulated gene 2 (CUG2) overexpression induces cancer stem cell-like phenotypes is not fully understood. The downregulation of FBXW7 E3 ligase, a tumor suppressor known for its proteolytic regulation of oncogenic proteins such as cyclin E, c-Myc, Notch, and Yap1, has been frequently reported in several types of tumor tissues, including those in the large intestine, cervix, and stomach. Therefore, we investigated whether FBXW7 is involved in CUG2-induced oncogenesis. In this study, the decreased expression of FBXW7 was examined in human lung adenocarcinoma A549 (A549-CUG2) and human bronchial BEAS-2B cells (BEAS-CUG2) overexpressing CUG2 and compared with control cells stably expressing an empty vector (A549-Vec or BEAS-Vec). Treatment with MG132 (a proteosome inhibitor) prevented the degradation of FBXW7 and Yap1 proteins, which are substrates of the FBXW7 E3 ligase. To address the role of Fbxw7 in the development of cancer stem cell (CSC) phenotypes, we suppressed Fbxw7 protein levels using its siRNA. We observed that decreased levels of FBXW7 enhanced cell migration, invasion, and spheroid size and number in A549-Vec and BEAS-Vec cells. The enforced expression of FBXW7 produced the opposite results in A549-CUG2 and BEAS-CUG2 cells. Furthermore, the downregulation of FBXW7 elevated the activities of EGFR, Akt, and ERK1/2 and upregulated β-catenin, Yap1, and NEK2, while the enforced expression of FBXW7 generated the opposite results. We thus propose that FBXW7 downregulation induced by CUG2 confers CSC-like phenotypes through the upregulation of both the EGFR-ERK1/2 and β-catenin-Yap1-NEK2 signaling pathways.

Effects of ingredients of Korean brown rice cookies on attenuation of cholesterol level and oxidative stress in high-fat diet-fed mice

  • Hong, Sun Hee;Kim, Mijeong;Woo, Minji;Song, Yeong Ok
    • Nutrition Research and Practice
    • /
    • v.11 no.5
    • /
    • pp.365-372
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Owing to health concerns related to the consumption of traditional snacks high in sugars and fats, much effort has been made to develop functional snacks with low calorie content. In this study, a new recipe for Korean rice cookie, dasik, was developed and its antioxidative, lipid-lowering, and anti-inflammatory effects and related mechanisms were elucidated. The effects were compared with those of traditional rice cake dasik (RCD), the lipid-lowering effect of which is greater than that of traditional western-style cookies. MATERIALS/METHODS: Ginseng-added brown rice dasik (GBRD) was prepared with brown rice flour, fructooligosaccharide, red ginseng extract, and propolis. Mice were grouped (n = 7 per group) into those fed a normal AIN-76 diet, a high-fat diet (HFD), and HFD supplemented with RCD or GBRD. Dasik in the HFD accounted for 7% of the total calories. The lipid, reactive oxygen species, and peroxynitrite levels, and degree of lipid peroxidation in the plasma or liver were determined. The expression levels of proteins involved in lipid metabolism and inflammation, and those of antioxidant enzymes were determined by western blot analysis. RESULTS: The plasma and hepatic total cholesterol concentrations in the GBRD group were significantly decreased via downregulation of sterol regulatory element-binding protein-2 and 3-hydroxy-3-methylglutaryl-CoA reductase (P < 0.05). The hepatic peroxynitrite level was significantly lower, whereas glutathione was higher, in the GBRD group than in the RCD group. Among the antioxidant enzymes, catalase (CAT) and glutathione peroxidase (GPx) were significantly upregulated in the GBRD group (P < 0.05). In addition, nuclear factor-kappaB (NF-${\kappa}B$) expression in the GBRD group was significantly lower than that in the RCD group. CONCLUSIONS: GBRD decreases the plasma and hepatic cholesterol levels by downregulating cholesterol synthesis. This new dasik recipe also improves the antioxidative and anti-inflammatory status in HFD-fed mice via CAT and GPx upregulation and NF-${\kappa}B$ downregulation. These effects were significantly higher than those of RCD.