DOI QR코드

DOI QR Code

MicroRNA-200a/210 Controls Proliferation and Osteogenic Differentiation of Human Adipose Tissue Stromal Cells

MicroRNA-200a/210의 인체 지방 유래 중간엽 줄기세포 골분화 및 증식 조절 기전

  • Kim, Young Suk (Department of Physiology, School of Medicine, Pusan National University) ;
  • Park, Hee Jeong (Department of Physiology, School of Medicine, Pusan National University) ;
  • Shin, Keun Koo (Department of Physiology, School of Medicine, Pusan National University) ;
  • Lee, Sun Young (Department of Physiology, School of Medicine, Pusan National University) ;
  • Bae, Yong Chan (Department of Plastic Surgery, School of Medicine, Pusan National University) ;
  • Jung, Jin Sup (Department of Physiology, School of Medicine, Pusan National University)
  • 김영숙 (부산대학교 의학전문대학원 생리학 교실) ;
  • 박희정 (부산대학교 의학전문대학원 생리학 교실) ;
  • 신근구 (부산대학교 의학전문대학원 생리학 교실) ;
  • 이선영 (부산대학교 의학전문대학원 생리학 교실) ;
  • 배용찬 (부산대학교 의학전문대학원 성형외과학 교실) ;
  • 정진섭 (부산대학교 의학전문대학원 생리학 교실)
  • Received : 2017.05.02
  • Accepted : 2017.07.18
  • Published : 2017.07.30

Abstract

MicroRNAs control the differentiation and proliferation of human adipose tissue-derived stromal cells (hADSCs). However, the role of miR-200a and miR210 on the osteogenic differentiaton of hADSCs has not been determined. hADSCs were isolated from human adipose tissues. Direct binding of mircoRNA to target mRNAs was determined by luciferase assay of the constructs containing putative microRNA binding sites within 3' untranslated region of target mRNAs. Overexpression of miR-200a increased the proliferation and osteogenic differentiation of hADSCs, while causing downregulation of the levels of ZEB2. Inhibition of miR-200a with antisense RNAs inhibited the proliferation and osteogenic differentiation of hADSCs. Overexpression of miR-210 was found to inhibit the proliferation of hADSCs but increase the osteogenic differentiation, while causing downregulation of the levels of IGFBP3. Inhibition of miR-210 with antisense RNAs increased the proliferation but inhibited the osteogenic differentiation of hADSCs. Analysis of the luciferase activity of the constructs containing the miR-200a target site within the ZEB2 3' region and the miR-210 target site within the IGFBP3 3' region revealed lower activity in the miR-200a- or miR-210-transfected hADSCs than in control miRNA-transfected hADSCs. Downregulation of ZEB2 or IGFBP3 in the hADSCs showed similar effects on both their proliferation and osteogenic differentiation with that of miR-200a and miR-210 overexpression, respectively. The results of the current study indicate that miR-200a and miR-210 regulate the osteogenic differentiation and proliferation of hADSCs through the direct targeting of IGFBP3 and ZEB2, respectively.

MicroRNA는 인체 지방 유래 중간엽 줄기세포(hADSC)의 분화와 증식을 조절할 수 있으나 hADSC에서 miR-200a와 miR210의 역할은 아직까지 보고된 바가 없다. 표적 mRNA의 3' UTR 에 결합할 수 있는 construct를 이용한 luciferase assay를 통하여 microRNA가 직접적으로 표적 mRNA에 결합하는 것을 확인 하였다. hADSC에서 miR-200a 과발현은 ZEB2의 발현 감소를 통해 hADSC의 분화와 증식을 증가시키는 것을 확인할 수 있었으며, miR210의 과발현은 IGFBP3의 발현 감소를 통해 hADSC의 증식을 감소시키는 반면, 분화는 증가시키는 것을 확인 할 수 있었다. hADSC에서 miR210의 발현 억제는 표적유전자의 발현을 증가시킴으로써 hADSC의 증식을 증가시키는 반면, 분화를 억제시키는 것을 확인할 수 있었다. luciferase assay통하여 microRNA-200a/210의 과발현이 대조군에 비해 표적 유전자인 ZEB2/ IGFBP3의 luciferase 활성화를 감소시키는 것을 확인하였으며, hADSC에서 ZEB2/ IGFBP3 발현 억제는 microRNA-200a/210 과발현과 유사한 효과를 나타내는 것을 확인할 수 있었다. 이러한 결과는 microRNA-200a/210가 hADSC의 분화와 증식을 각각의 표적 유전자인 ZEB2/ IGFBP3을 통해 조절한다는 것을 나타낸다.

Keywords

References

  1. Ahmad, A., Aboukameel, A., Kong, D., Wang, Z., Sethi, S., Chen, W., Sarkar, F. H. and Raz, A. 2011. Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Res. 71, 3400-3409. https://doi.org/10.1158/0008-5472.CAN-10-0965
  2. Bodempudi, V., Hergert, P., Smith, K., Xia, H., Herrera, J., Peterson, M., Khalil, W., Kahm, J., Bitterman, P. B. and Henke, C. A. 2014. miR-210 promotes IPF fibroblast proliferation in response to hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 307, L283-294. https://doi.org/10.1152/ajplung.00069.2014
  3. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B. and Cohen, S. M. 2003. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25-36. https://doi.org/10.1016/S0092-8674(03)00231-9
  4. Chan, S. Y., Zhang, Y. Y., Hemann, C., Mahoney, C. E., Zweier, J. L. and Loscalzo, J. 2009. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell. Metab. 10, 273-284. https://doi.org/10.1016/j.cmet.2009.08.015
  5. Cong, N., Du, P., Zhang, A., Shen, F., Su, J., Pu, P., Wang, T., Zjang, J., Kang, C. and Zhang, Q. 2013. Downregulated microRNA-200a promotes EMT and tumor growth through the wnt/beta-catenin pathway by targeting the E-cadherin repressors ZEB1/ZEB2 in gastric adenocarcinoma. Oncol. Rep. 29, 1579-1587. https://doi.org/10.3892/or.2013.2267
  6. Fasanaro, P., D'Alessandra, Y., Di Stefano, V., Melchionna, R., Romani, S., Pompilio, G., Capogrossi, M. C. and Martelli, F. 2008. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J. Biol. Chem. 283, 15878-15883. https://doi.org/10.1074/jbc.M800731200
  7. Firth, S. M and Baxter, R. C. 2002. Cellular actions of the insulin-like growth factor binding proteins. Endocr. Rev. 23, 824-854. https://doi.org/10.1210/er.2001-0033
  8. Gao, S. L., Wang, L. Z., Liu, H. Y., Liu, D. L., Xie, L. M. and Zhang, Z. W. 2014. miR-200a inhibits tumor proliferation by targeting AP-2gamma in neuroblastoma cells. Asian. Pac. J. Cancer Prev. 15, 4671-4676. https://doi.org/10.7314/APJCP.2014.15.11.4671
  9. Giannakakis, A., Sandaltzopoulos, R., Greshock, J., Liang, S., Huang, J., Hasegawa, K, Li, C., O'Brien-Jenkins, A., Katsaros, D., Weber, B. L., Simon, C., Coukos, G. and Zhang, L. 2008. miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol. Ther. 7, 255-264. https://doi.org/10.4161/cbt.7.2.5297
  10. Gregory, P. A., Bracken, C. P., Smith, E., Bert, A. G., Wright, J. A., Roslan, S., Morris, M., Wyatt, L., Farshid, G., Lim, Y. Y., Lindeman, G. J., Shannon, M. F., Drew, P. A., Khew-Goodall, Y. and Goodall, G. J. 2011. An autocrine TGF-beta/ ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol. Biol. Cell 22, 1686-1698. https://doi.org/10.1091/mbc.E11-02-0103
  11. Hua, Z., Lv, Q., Ye, W., Wong, C. K., Cai, G., Gu, D., Ji, Y., Zhao, C., Wang, J., Yang, B. B. and Zhang, Y. 2006. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 1, e116. https://doi.org/10.1371/journal.pone.0000116
  12. Huang, X., Le, Q. T. and Giaccia, A. J. 2010. MiR-210-micromanager of the hypoxia pathway. Trends Mol. Med. 16, 230-237. https://doi.org/10.1016/j.molmed.2010.03.004
  13. Johnston, R. J. and Hobert, O. 2003. microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426, 845-849. https://doi.org/10.1038/nature02255
  14. Kalluri, H. S. and Dempsey, R. J. 2011. IGFBP-3 inhibits the proliferation of neural progenitor cells. Neurochem. Res. 6, 406-411.
  15. Kamanga-Sollo, E., Pampusch, M. S., Whitem M. E. and Dayton, W. R. 2003. Role of insulin-like growth factor binding protein (IGFBP)-3 in TGF-beta- and GDF-8 (myostatin)- induced suppression of proliferation in porcine embryonic myogenic cell cultures. J. Cell. Physiol. 197, 225-231. https://doi.org/10.1002/jcp.10362
  16. Kim, J. H., Park, S. G., Song, S. Y., Kim, J. K. and Sung, J. H. 2013. Reactive oxygen species-responsive miR-210 regulates proliferation and migration of adipose-derived stem cells via PTPN2. Cell. Death. Dis. 4, e588. https://doi.org/10.1038/cddis.2013.117
  17. Kim, Y. J., Bae, S. W., Yu, S. S., Bae, Y. C. and Jung, J. S. 2009. miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J. Bone. Miner. Res. 24, 816-825. https://doi.org/10.1359/jbmr.081230
  18. Kim, Y. J., Hwang, S. J., Bae, Y. C. and Jung, J. S. 2009. MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells 27, 3093-3102.
  19. Korpal, M., Lee, E. S., Hu, G. and Kang, Y. 2008. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283, 14910-14914. https://doi.org/10.1074/jbc.C800074200
  20. Levi, B., Wan, D. C., Glotzbach, J. P., Hyun, J., Januszyk, M., Montoro, D., Sorkin, M., James, A. W., Nelson, E. R., Li, S., Quarto, N., Lee, M., Gurtner, G. C. and Longaker, M. T. 2011. CD105 protein depletion enhances human adipose- derived stromal cell osteogenesis through reduction of transforming growth factor beta1 (TGF-beta1) signaling. J. Biol. Chem. 286, 39497-39509. https://doi.org/10.1074/jbc.M111.256529
  21. Li, H., Tang, J., Lei, H., Cai, P., Zhu, H., Li, B., Xu, X., Xia, Y. and Tang, W. 2014. Decreased MiR-200a/141 suppress cell migration and proliferation bytargeting PTEN in Hirschsprung's disease. Cell. Physiol. Biochem. 34, 543-553. https://doi.org/10.1159/000363021
  22. Li, J., Jin, D., Fu, S., Mei, G., Zhou, J., Lei, L., Yu, B. and Wang, G. 2013. Insulin-like growth factor binding protein-3 modulates osteoblast differentiation via interaction with vitamin D receptor. Biochem. Biophys. Res. Commun. 436, 632-637. https://doi.org/10.1016/j.bbrc.2013.04.111
  23. Liang, W. C., Wang, Y., Wan, D. C., Yeung, V. S. and Waye, M. M. 2013. Characterization of miR-210 in 3T3-L1 adipogenesis. J. Cell. Biochem. 114, 2699-2707. https://doi.org/10.1002/jcb.24617
  24. Liu, Y., Liu, Q., Jia, W., Chen, J., Wang, J., Ye, D., Guo, X., Chen, W., Li, G., Wang, G., Deng, A. and Kang, J. 2013. MicroRNA-200a regulates Grb2 and suppresses differentiation of mouse embryonic stem cells into endoderm and mesoderm. PLoS One 8, e68990. https://doi.org/10.1371/journal.pone.0068990
  25. Lu, D. F., Yao, Y., Su, Z. Z., Zeng, Z. H., Xing, X. W., He, Z. Y. and Zhang, C. 2014. Downregulation of HDAC1 is involved in the cardiomyocyte differentiation from mesenchymal stem cells in a myocardial microenvironment. PLoS One 9, e93222. https://doi.org/10.1371/journal.pone.0093222
  26. Mizuno, Y., Tokuzawa, Y., Ninomiya, Y., Yagi, K., Yatsuka- Kanesaki, Y., Suda, T., Fukuda, T., Katagiri, T., Kondoh, Y., Amemiya, T., Tashiro, H. and Okazaki, Y. 2009. miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b. FEBS. Lett. 583, 2263-2268. https://doi.org/10.1016/j.febslet.2009.06.006
  27. Nagaoka, K., Zhang, H., Watanabe, G. and Taya, K. 2013. Epithelial cell differentiation regulated by MicroRNA-200a in mammary glands. PLoS One 8, e65127. https://doi.org/10.1371/journal.pone.0065127
  28. Ochiai, H., Okada, S., Saito, A., Hoshi, K., Yamashita, H., Takato, T. and Azuma, T. 2012. Inhibition of insulin-like growth factor-1 (IGF-1) expression by prolonged transforming growth factor-beta1 (TGF-beta1) administration suppresses osteoblast differentiation. J. Biol. Chem. 287, 22654-22661. https://doi.org/10.1074/jbc.M111.279091
  29. Pampusch, M. S., Kamanga-Sollo, E., Hathaway, M. R., White, M. E. and Dayton, W. R. 2011. Low-density lipoprotein- related receptor protein 1 (LRP-1) is not required for insulin-like growth factor binding protein 3 (IGFBP-3) to suppress L6 myogenic cell proliferation. Domest. Anim. Endocrinol. 40, 197-204. https://doi.org/10.1016/j.domaniend.2011.01.001
  30. Park, S. M., Gaur, A. B., Lengyel, E. and Peter, M. E. 2008. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes. Dev. 22, 894-907. https://doi.org/10.1101/gad.1640608
  31. Peng, C., Li, N., Ng, Y. K., Zhang, J., Meier, F., Theis, F. J., Merkenschlager, M., Chen, W., Wurst, W. and Prakash, N. 2012. A unilateral negative feedback loop between miR- 200 microRNAs and Sox2/E2F3 controls neural progenitor cell-cycle exit and differentiation. J. Neurosci. 32, 13292-13308. https://doi.org/10.1523/JNEUROSCI.2124-12.2012
  32. Puisségur, M. P., Mazure, N. M., Bertero, T., Pradelli, L., Grosso, S., Robbe-Sermesant, K., Maurin, T., Lebrigand, K., Cardinaud, B., Hofman, V., Fourre, S., Magnone, V., Ricci, J. E., Pouysségur, J., Gounon, P., Hofman, P., Barbry, P. and Mari, B. 2011. miR-210 is overexpressed in late stages of lung cancerand mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ. 18, 465-478. https://doi.org/10.1038/cdd.2010.119
  33. Pulkkinen, K., Malm, T., Turunen, M., Koistinaho, J. and Ylä-Herttuala, S. 2008. Hypoxia induces microRNA miR-210 in vitro and in vivo ephrin-A3 and neuronal pentraxin 1 are potentially regulated by miR-210. FEBS. Lett. 582, 2397-2401. https://doi.org/10.1016/j.febslet.2008.05.048
  34. Raucci, A., Bellosta, P., Grassi, R., Basilico, C. and Mansukhani, A. 2008. Osteoblast proliferation or differentiation is regulated by relative strengths of opposing signaling pathways. J. Cell. Physiol. 215, 442-451. https://doi.org/10.1002/jcp.21323
  35. Rhodes, S. D., Wu, X., He, Y., Chen, S., Yang, H., Staser, K. W., Wang, J., Zhang, P., Jiang, C., Yokota, H., Dong, R., Peng, X., Yang, X., Murthy, S., Azhar, M., Mohammad, K. S., Xu, M., Guise, T. A. and Yang, F. C. 2013.Hyperactive transforming growth factor-beta1 signaling potentiates skeletal defects in a neurofibromatosis type 1 mouse model. J. Bone Miner. Res. 28, 2476-2489. https://doi.org/10.1002/jbmr.1992
  36. Shin, K. K., Kim, Y. S., Kim, J. Y., Bae, Y. C. and Jung, J. S. 2014. miR-137 controls proliferation and differentiation of human adipose tissue stromal cells. Cell. Physiol. Biochem. 33, 758-768. https://doi.org/10.1159/000358650
  37. Tarantino, C., Paolella, G., Cozzuto, L., Minopoli, G., Pastore, L., Parisi, S. and Russo, T. 2010. miRNA 34a, 100, and 137 modulate differentiation of mouse embryonic stem cells. Faseb. J. 24, 3255-3263. https://doi.org/10.1096/fj.09-152207
  38. Tsuchiya, S., Fujiwara, T., Sato, F., Shimada, Y., Tanaka, E., Sakai, Y., Shimizu, K. and Tsujimoto, G. 2011. MicroRNA-210 regulates cancer cell proliferation through targeting fibroblast growth factor receptor-like 1 (FGFRL1). J. Biol. Chem. 286, 420-428. https://doi.org/10.1074/jbc.M110.170852
  39. Uhlmann, S., Zhang, J. D., Schwager, A., Mannsperger, H., Riazalhosseini, Y.,Burmester, S., Ward, A., Korf, U., Wiemann, S. and Sahin, O. 2010. miR-200bc/429 cluster targets PLCgamma1 and differentially regulates proliferation and GF-driven invasion than miR-200a/141 in breast cancer. Oncogene 29, 4297-4306. https://doi.org/10.1038/onc.2010.201
  40. Verstappen, G., van Grunsven, L. A., Michiels, C., Van de Putte, T., Souopgui J.,Van Damme, J., Bellefroid, E., Vandekerckhove, J. and Huylebroeck, D. 2008. Atypical Mowat-Wilson patient confirms the importance of the novel association between ZFHX1B/SIP1 and NuRD corepressor complex. Hum. Mol. Genet. 17, 1175-1183. https://doi.org/10.1093/hmg/ddn007
  41. Wang, Z., Yin, B., Wang, B., Ma, Z., Liu, W. and Lv, G. 2014. MicroRNA-210 promotes proliferation and invasion of peripheral nerve sheath tumor cells targeting EFNA3. Oncol. Res. 21, 145-154. https://doi.org/10.3727/096504013X13841340689573
  42. Xia, H., Ng, S. S., Jiang, S., Cheung, W. K., Sze, J., Bian, X. W., Kung, H. F. and Lin, M. C. 2010. miR-200a-mediated downregulation of ZEB2 and CTNNB1 differentially inhibits nasopharyngeal carcinoma cell growth, migration and invasion. Biochem. Biophys. Res. Commun. 391, 535-541. https://doi.org/10.1016/j.bbrc.2009.11.093
  43. Xu, P., Vernooy, S. Y., Guo, M. and Hay, B. A. 2003. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol. 13, 790-795. https://doi.org/10.1016/S0960-9822(03)00250-1
  44. Yang, W., Sun, T., Cao, J., Liu, F., Tian, Y. and Zhu, W. 2012. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro. Exp. Cell Res. 318, 944-954. https://doi.org/10.1016/j.yexcr.2012.02.010
  45. Yin, J., Ding, J., Huang, L., Tian, X., Shi, X., Zhi, L., Song, J., Zhang, Y., Gao, X., Yao, Z., Jing, X. and Yang, J. 2013. SND1 affects proliferation of hepatocellular carcinoma cell line SMMC-7721 by regulating IGFBP3 expression. Anat. Rec. (Hoboken) 296, 1568-1575. https://doi.org/10.1002/ar.22737
  46. Zeng, L., He, X., Wang, Y., Tang, Y., Zheng, C., Cai, H., Liu, J., Wang, Y., Fu, Y. and Yang, G. Y. 2014. MicroRNA-210 overexpression induces angiogenesis and neurogenesis in the normal adult mouse brain. Gene Ther. 21, 37-43. https://doi.org/10.1038/gt.2013.55
  47. Zhang, Z., Sun, H., Dai, H., Walsh, R. M., Imakura, M., Schelter, J., Burchard, J., Dai, X., Chang, A. N., Diaz, R. L., Marszalek, J. R., Bartz, S. R., Carleton, M., Cleary, M. A., Linsley, P. S. and Grandori, C. 2009. MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT. Cell Cycle 8, 2756-2768. https://doi.org/10.4161/cc.8.17.9387
  48. Zhao, L., Jiang, S. and Hantash, B. M. 2010. Transforming growth factor beta1 induces osteogenic differentiation of murine bone marrow stromal cells. Tissue. Eng. Part. A. 16, 725-733. https://doi.org/10.1089/ten.tea.2009.0495