• Title/Summary/Keyword: Downlink Capacity

Search Result 123, Processing Time 0.021 seconds

Scheduling Methods for Multi-User Optical Wireless Asymmetrically-Clipped OFDM

  • Wilson, Sarah Kate;Holliday, Joanne
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.655-663
    • /
    • 2011
  • Diffuse optical wireless (DOW) systems have the advantage that they do not require point-to-point siting so one transmitter can communicate with several receivers. In this paper, we investigate multiple access scheduling methods for downlink orthogonal frequency division multiplexing (OFDM) in diffuse optical wireless networks. Unlike the radio frequency (RF) channel, the DOW channel has low-pass filter characteristics and so requires different scheduling methods than those developed for the RF channel. Multi-user diversity orthogonal frequency division multiple access (OFDMA) systems nominate a cluster of subcarriers with the largest signal-to-noise-ratio for transmission. However, in a DOW channel, most users would choose the lowest frequency clusters of subcarriers. To remedy this problem, we make two proposals. The first is to use a variable cluster size across the subcarriers; the lower frequency clusters will have fewer subcarriers while the higher frequency clusters will have more subcarriers. This will equalize the capacity of the clusters. The second proposal is to randomize a user's cluster selection from a group of clusters satisfying a minimum threshold. Through simulation it is shown that combining these strategies can increase the throughput while ensuring a fair distribution of the available spectrum.

BER performance of MIMO 16QAM with transmit and receive polarization diversify technique on mobile communication channel (이동통신 채널에서 송수신 편파 디버시티 기법을 채용한 MIMO 16QAM의 BER 성능분석)

  • Kim, Tae-Heon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.1
    • /
    • pp.135-141
    • /
    • 2008
  • The utilization techniques for multiple transmit and receive antennas or high capacity modulation schemes are essential to cope with the rapidly increasing demand for realizing more diverse wireless communication services with high rates. However, employing multiple receive antennas at the mobile units seems less practical due at the size and power limitations. Therefore, transmit diversify techniques have been extensively investigated for the downlink transmission to improve the performance In order to overcome the above mentioned problems, we construct a simulation model which combines STC and polarization diversity which scheme is requiring less cost to realize. Multi-level quadrature amplitude modulation (MQAM) is an attractive modulation scheme for wireless communication due to the high spectral efficiency it provides. Thus, the performance for our scheme is presented when 16QAM modulation techniques are applied. and compared with the former schemes.

  • PDF

Binary Power Control for Sum Rate Maximization of Full Duplex Transmission in Multicell Networks

  • Vo, Ta-Hoang;Hwang, Won-Joo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.583-585
    • /
    • 2016
  • The recent advances in wireless networks area have led to new techniques, such as small cells or full-duplex (FD) transmission, have also been developed to further increase the network capacity. Particularly, full-duplex communication promises expected throughput gain by doubling the spectrum compared to half-duplex (HD) communication. Because this technique permits one set of frequencies to simultaneously transmit and receive signals. In this paper, we focus on the binary power control for the users and the base stations in full-duplex multiple cellulars wireless networks to obtain optimal sum-rate under the effect interference and noise. We investigate with a scenario in there one carrier is assigned to only one user in each cell and construct a model for this problem. In this work, we apply the binary power control by the its simplification in the implemented algorithm for both uplink and downlink simultaneously to maximize sum data rate of the system. At first, we realize the 2-cells case separately to check the optimal power allocation whether being binary. Then, we carry on with N-cells case in general through properties of binary power control.

  • PDF

Downlink Parallel Transmit Power Control Algorithm during Soft handover for WCDMA System (WCDMA 소프트 핸드오버 시 하향 병렬 전송 전력 제어 알고리즘)

  • Han Young ok;Seo kyung Jin;Park Sung kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4A
    • /
    • pp.271-281
    • /
    • 2005
  • This paper for establishing the reliability of the TPC command is introduced, where the soft symbol of the TPC command itself is directed used as a reliability indicator. In addition to the new reliability estimation, the concept of parallel use of TPC algorithms is presented. The results show that the soft symbol reliability estimation decrease the $P_{tx}$ levels with 0.3 dB, thus providing a useful capacity gain. The parallel use of 2 to 4 algorithms is also shown to decrease the sensitivity of the algorithms to the algorithm thresholds used, and thus increase the feasibility of the algorithms in a real world networks.

Adaptive Mode Switching in Correlated Multiple Antenna Cellular Networks

  • Lee, Chul-Han;Chae, Chan-Byoung;Vishwanath, Sriram;Heath, Jr., Robert W.
    • Journal of Communications and Networks
    • /
    • v.11 no.3
    • /
    • pp.279-286
    • /
    • 2009
  • This paper proposes an adaptive mode switching algorithm between two strategies in multiple antenna cellular networks:A single-user mode and a multi-user mode for the broadcast channel. If full channel state information is available at the base station, it is known that a multi user transmission strategy would outperform all single-user transmission strategies. In the absence of full side information, it is unclear what the capacity achieving method is, and thus there are few criteria to decide which of the myriad possible methods performs best given a system configuration. We compare a single user transmission and a multi user transmission with linear receivers in this paper where the transmitter and the receivers have multiple antennas, and find that neither strategy dom inates the other. There is instead a transition point between the two strategies. Then, the mode switching point is determined both ana lytically and numerically for a multiple antenna cellular downlink with correlation between transmit antennas.

Dynamic Resource Allocation Scheme for Multiple Antenna OFDM-based Wireless Multicast Systems (다중안테나 OFDM 멀티캐스트 시스템을 위한 동적 자원할당 알고리즘)

  • Xu, Jian;Lee, Sang-Jin;Kang, Woo-Seok;Seo, Jong-Soo
    • Journal of Broadcast Engineering
    • /
    • v.13 no.6
    • /
    • pp.883-891
    • /
    • 2008
  • Multiple antenna orthogonal frequency division multiplexing (OFDM) is a promising technique for the high downlink-capacity in the next generation wireless systems, in which adaptive resource allocation is an important research issue that can significantly improve the performance with guaranteed QoS for users. However, most of the current resource allocation algorithms are limited to unicast system. In this paper, dynamic resource allocation is studied for multiple antenna OFDM based systems with multicast service. In the simulation, the performance of multicast system was compared with that of the unicast system. Numerical results also show that by using the proposed algorithms the system capacity is significantly improved compared with the conventional scheme.

Study on the Spectrum Sharing based on Analysis of Channel Interference between LTE/LTE-Advanced Systems (LTE/LTE-Advanced 시스템간 채널 간섭분석을 통한 주파수 공유 연구)

  • Kang, Young-Heung
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.219-226
    • /
    • 2012
  • Since OFDM(Orthogonal Frequency Division Multiplexing) technology is applied into LTE(Long Term Evolution)/LTE-Advanced system, it is important to estimate the spectrum sharing and to analyze interference in LTE system based on the characteristics of frequency assignment. Therefore, in this paper, a study on the adjacent channel interference between two operators/systems to provide LTE services. For co-existence of LTE systems, the relative capacity loss and the relative throughput loss in uplink and downlink have been simulated to evaluated ACIR(Adjacent Channel Interference Ratio) values with 5% loss rate. Some parameters such as the location of user, aggressor bandwidth, and the separation offset affect the required ACIR value for spectrum sharing, and these results and interference analysis schemes in this article can provide reliable reference for LTE RF standardization and efficient frequency utilization in future.

Radio Resource Management of CoMP System in HetNet under Power and Backhaul Constraints

  • Yu, Jia;Wu, Shaohua;Lin, Xiaodong;Zhang, Qinyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3876-3895
    • /
    • 2014
  • Recently, Heterogeneous Network (HetNet) with Coordinated Multi-Point (CoMP) scheme is introduced into Long Term Evolution-Advanced (LTE-A) systems to improve digital services for User Equipments (UEs), especially for cell-edge UEs. However, Radio Resource Management (RRM), including Resource Block (RB) scheduling and Power Allocation (PA), in this scenario becomes challenging, due to the intercell cooperation. In this paper, we investigate the RRM problem for downlink transmission of HetNet system with Joint Processing (JP) CoMP (both joint transmission and dynamic cell selection schemes), aiming at maximizing weighted sum data rate under the constraints of both transmission power and backhaul capacity. First, joint RB scheduling and PA problem is formulated as a constrained Mixed Integer Programming (MIP) which is NP-hard. To simplify the formulation problem, we decompose it into two problems of RB scheduling and PA. For RB scheduling, we propose an algorithm with less computational complexity to achieve a suboptimal solution. Then, according to the obtained scheduling results, we present an iterative Karush-Kuhn-Tucker (KKT) method to solve the PA problem. Extensive simulations are conducted to verify the effectiveness and efficiency of the proposed algorithms. Two kinds of JP CoMP schemes are compared with a non-CoMP greedy scheme (max capacity scheme). Simulation results prove that the CoMP schemes with the proposed RRM algorithms dramatically enhance data rate of cell-edge UEs, thereby improving UEs' fairness of data rate. Also, it is shown that the proposed PA algorithms can decrease power consumption of transmission antennas without loss of transmission performance.

A Study on the SNR Margin Performance of Digital Subscriber Line in Complex Noises Environment (복합 잡음환경에서 디지털 가입자 회선의 SNR 마진 성능에 관한 연구)

  • 김용환;조평동;박상준;강영흥
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.9C
    • /
    • pp.829-835
    • /
    • 2002
  • DSL(digital subscriber line) transceiver designers have concerned the impulsive noise as well as NEXT(near-end crosstalk) and FEXT(far-end crosstalk) immunities Down as the strongest sources that limit the DSL channel capacity. In these noise environment the analysis on the performance of DSL should be needed. Therefore, in this paper we have estimated and simulated the SNR(signal-to-noise ratio) margin of DMT(discrete multi-tone) signal in Gauss, NEXT, FEXT and impulse noise environment by modeling an Middleton's Class A impulse signal with the test Cook pulses. As a result, it is known that the transmission rate of uplink is limited by noise characteristics rather than by loop length, but that of downlink limited complexly by both of noise characteristics and loop length. In conclusion, these results will be utilized as the threshold of ADSL performance in the complex noise environment including impulse noise.

Relay Deployment Strategy for Minimizing Outage Probability of Downlink Cellular Systems (하향링크의 오수신 확률을 최소화하는 무선 중계기 위치 결정)

  • Kim, Jeong-Su
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.75-81
    • /
    • 2009
  • The cellular system in the next generation decreases the range of transmission of a signal as well as increases the rate of transmission adapting the method of multi-hop relaying with the relay. However, the fact of decreasing the range of transmission with the method of multi-hop relaying means increasing interferential amount in the outer cell; therefore, the deployment of the relay can affect to the function of the cellular system. In this thesis, the deployment of the relay is determined for the maximum rate of transmission, based on the transmission power of the relay and the variation of interferential amount. The condition to determine the deployment of the relay is analyzed with the mathematical model; in addition, its performance is verified through the result of a simulation. Based on the analysis of this thesis, the established deployment and transmission power of the relay to minimize the average outage probability exist. Furthermore, the relay contributes to enlargement of capacity of cells, decreasing the average outage probability in the situation of less severe interference between cells with reuse of frequency. However, the relay should be restrained in use in the situation of severe interference between cells due to the fact that the outage probability of inter-cells can be increased.

  • PDF