• Title/Summary/Keyword: Down Force

Search Result 496, Processing Time 0.023 seconds

Wind Force Coefficients Computation of Gantry Crane by Wind Tunnel Experiment and Structural Analysis of the Crane (풍동실험에 의한 갠트리 크레인의 풍력계수 산출과 구조 해석)

  • Lee, Jae-Hwan;Kim, Tae-Wan;Jang, In-Geun;Han, Soon-Hung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.2
    • /
    • pp.165-170
    • /
    • 2011
  • In this paper, wind force coefficient by wind tunnel experiment is obtained to compute the accurate wind force of the gantry crane model to be used for mobile harbor ship. The first crane model was tested under 20, 30, 40, 52m/s, partially 58m/s and the wind force coefficient is about 2.0 which is very close to the suggested theoretical value. The other is the more reliable crane model and tested under 20, 30, 40m/s also giving the similar realistic wind force coefficient. Also structural analysis of crane model was performed giving the reliable stress level. Since the rolling effect is important for mobile harbor ship, the safety of the crane on the ship needs to be guaranteed. For this, using the computed reaction forces, a tie-down design is suggested which connects the crane and ship to resist the turnover motion of the crane.

Reliability verification of cutting force experiment by the 3D-FEM analysis from reverse engineering design of milling tool (밀링 공구의 역 공학 설계에서 3D 유한요소 해석을 통한 절삭력 실험의 신뢰성 검증)

  • Jung, Sung-Taek;Wi, Eun-Chan;Kim, Hyun-Jeong;Song, Ki-Hyeok;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.54-59
    • /
    • 2019
  • CNC(Computer Numerical Control) machine tools are being used in various industrial fields such as aircraft and automobiles. The machining conditions used in the mold industry are used, and the simulation and the experiment are compared. The tool used in the experiment was carried out to increase the reliability of the simulation of the cutting machining. The program used in the 3D-FEM (finite element method) was the AdvantEdge and predicted by down-milling. The tool model is used 3D-FEM simulation by using the cutting force, temperature prediction. In this study, we carried out the verification of cutting force by using a 3-axis tool dynamometer (Kistler 9257B) system when machining the plastic mold Steel machining of NAK-80. The cutting force experiment data using on the charge amplifier (5070A) is amplified, and the 3-axis cutting force data are saved as a TDMS file using the Lab-View based program using on NI-PXIe-1062Q. The machining condition 7 was the most similar to the simulation and the experimental results. The material properties of the NAK-80 material and the simulation trends reflected in the reverse design of the tool were derived similarly to the experimental results.

Structural Analysis of PWR(pressurized water reactor) Canister for Applied Impact Force Occurring at the Moment of Falling Plumb Down Collision (추락낙하 충돌 시 가해지는 충격에 대한 경수로(PWR) 처분용기의 구조해석)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.211-222
    • /
    • 2011
  • In this paper a structural analysis of the PWR(pressurized water reactor) canister with 102cm diameter is carried out to evaluate the structural safety of the canister for the impact force occurring at the moment of collision with the ground in the falling plumb down accident from the carriage vehicle which may happen during the canister handling at the spent nuclear fuel disposal repository. For this, a rigid body dynamic analysis of the canister is executed to compute the impact force using the commercial CAE system, RecurDyn, and a nonlinear structural analysis is performed to compute stresses and deformations occurring inside the canister for this computed impact force using the commercial FEM code, NISA. From these analysis results, the structural safety of the canister is evaluated for the falling plumb down accident from the carriage vehicle due to the inattention during the canister handling at the repository. The rigid body dynamic analysis performed assuming the canister as a rigid body shows that the canister falls plumb down to the ground in two types. And also it shows that early collision impact force is the biggest one and following impact forces decrease gradually. The height of the carriage vehicle in the repository is assumed as 5m in order to obtain the stable structural safety evaluation result. The nonlinear structural analysis of the canister is executed for the biggest early impact force. The structural analysis result of the canister shows that the structural safety of the PWR canister is not secured for the falling plumb down accident from the moving carriage vehicle because the maximum stresses occurring in the cast iron insert of canister are bigger than the yield stress of the cast iron.

Active Control of Vibrational Intensity at a Reference Point in an Infinite, Elastic Plate (무한 탄성 평판상의 기준점에 전달되는 진동인텐시티의 능동제어)

  • 김기만
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.22-30
    • /
    • 2001
  • In this paper, active control of vibrational intensity at a reference point in an infinite, elastic plate was discussed. The plate is excised harmonically by a vibrating source, which has a vertical point force. The optimal condition of controller was investigated to minimize the vibrational intensity being transmitted from the vibrating source to a reference point. Hence the method of feedforward control was employed for the control strategy and then the cost function was evaluated to find the optimal control force. Three types of control force (Vertical force, Moment, and Coupling force (a set of vertical force and moment) ) and controller's positions were examined to define the optimal condition of the controller. The vibrational intensity at a reference point was found to be reduced down to a zero level, compared with the uncontrolled case. Especially maximum reduction of vibrational intensity was achieved when the controller was collinearly positioned between a vibrating source and a reference point.

  • PDF

An Evaluation on Cutting Characteristics in Milling Process with Different Helix Angle Endmills (밀링가공에서 부등각 엔드밀의 절삭특성 평가)

  • 이상복;김원일;왕덕현;김실경
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.1-7
    • /
    • 2003
  • The experimental research was conducted to find an end mill with an ideal helix angle, which has a superior anti-vibration effect and a low machining tolerance. A conventional endmill which all low blades are $30^{\circ}$ helix angles and a different helix angle endmill which the opposite two blades are $30^{\circ}$ and the other opposites are different helix angles were studied. The cutting farce, machining tolerance and surface roughness were obtained. The AE signals appeared to have low values in up-milling rather than in down-milling. These are also appeared to have low values at low spindle revolutions rates. The cutting force values of Fxy and Fxyz were found to be increased according to the value of helix angle. In up-milling, it was difficult to find a definite tendency in machining tolerance, but in down-milling machining tolerance of the different helix angle end mill was found to be lower than that of the convention end mill. There is a definite tendency that the surface roughness gets better as the RPM increases. In down-milling, Type A($25^{\circ}$$30^{\circ}$) appeared to bring the most satisfactory result.

Optimization of CMP Process Parameter using Semi-empirical DOE (Design of Experiment) Technique (반경험적인 실험설계 기법을 이용한 CMP 공정 변수의 최적화)

  • 이경진;김상용;서용진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.939-945
    • /
    • 2002
  • The rise throughput and the stability in the device fabrication can be obtained by applying chemical mechanical polishing (CMP) process in 0.18 $\mu\textrm{m}$ semiconductor device. However, it still has various problems due to the CMP equipment. Especially, among the CMP components, process variables are very important parameters in determining the removal rate and non-uniformity. In this paper, we studied the DOE (design of experiment) method in order to get the optimized CMP equipment variables. Various process parameters, such as table and head speed, slurry flow rate and down force, have investigated in the viewpoint of removal rate and non-uniformity. Through the above DOE results, we could set-up the optimal CMP process parameters.

A Study on the Reduction of Viscous Frictional Force with Uniform Pressure Distribution in the Turbulent Boundary Layer (균일(均一) 압력(壓力) 분포(分布)에 의(依)한 난류(亂流) 경계층내(境界層內) 결성(結性) 마찰력(摩擦力)의 감소화(減小化)에 관한 연구(硏究))

  • Sung, Du-Nam;Kim, Si-Young
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.1
    • /
    • pp.40-48
    • /
    • 1997
  • In this study, uniform pressure distribution with small hole on the surface of symmetric object were given to reduce the viscous frictional force. The results were as follows : 1. The velocity on upper stream were accelerated by uniform pressure distribution on symmetric objects for reducing the viscous frictional resistances. 2. The effects of the distributed small holes were reduced the viscous frictional resistances in down stream region more than upper stream due to the increasing pressure in reverse flow region. 3. The viscous skin friction on surface of symmetric objects with and without distributed small holes are effect in region of upper stream and much decreased in down stream region due to increasing of boundary layer thickness.

  • PDF

Vehicle dynamic behavior comparison between two different constraining methods on a chassis dynamometer (차대 동력계에서 자동차 구속조건에 따른 거동 특성 비교)

  • Kang, Yeon Jun;Kim, Heesoo;Song, David P.;Min, Dongwoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.1000-1003
    • /
    • 2014
  • The primary purpose of this study is to observe the dynamic behavior within a vehicle on chassis dynamometer throughout cleat impact testing with two different constraining setups (Tie-down strap and one point fixation). Throughout this empirical experiment, no outstanding dynamic behavior characteristics are observed between two setups and thus, the performance of the one point fixation device is validated. Neither the interior noise nor acceleration at driver seat rail and knuckle is heavily influenced by two different constraining methods. However, one point fixation is far more advantageous considering its shorter set up time and its capability of measuring traction force with its built in force sensor.

  • PDF

Deaggregation and Ultradispersion of Detonation Nanodiamonds in Polar Solvent Using Physicochemical Treatments (물리화학적 처리를 통한 극성 용매 내 나노다이아몬드의 탈응집 및 분산성 향상 연구)

  • Kim, Changkyu;Lee, Gyoung-Ja;Rhee, Changkyu
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.479-486
    • /
    • 2013
  • In the present work, physicochemical treatments were introduced for de-aggregation and stable dispersion of detonation nanodiamonds (DND) in polar solvents. The DNDs in water exhibited a particle size of 138 nm and high dispersion stability without particular treatment. However, the DNDs in ethanol were severely aggregated to several micrometers in size and showed poor dispersion stability with time. To break down aggregates of DNDs and enhance the dispersion stability of them in ethanol, mechanical force and chemical surfactant were introduced as functions of zirconia ball size, kind of surfactant and amount of surfactant added. From the analyses of average particle size and Turbiscan results, it was suggested that the size of DNDs in ethanol can be reduced by only mechanical force; however, the DNDs were re-aggregated due to high surface activity. The long-term dispersion stability can be achieved by applying mechanical force to break down the aggregates of DNDs and by preventing re-aggregation of them using proper surfactant.

Machinability Evaluation of the Plastic Mould Steel using AlTiN Coated Tool (AlTiN코팅공구를 사용한 플라스틱금형강의 기계가공성 평가)

  • Lee, Seung-Chul;Cho, Gyu-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.629-635
    • /
    • 2009
  • In this research, KP-4, one of the plastic mold steels, was coated with the AlTiN from one layer to four layers by the PVD method in the $\Phi$ 8mm cemented carbide ball end mill. Coated KP-4 was processed with various conditions. For example, slope of $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ the spindle rotation speed was changed from 10,000rpm to 16,000rpm, the tool feeding speed was changed from 1,300mm/min to 1,700mm/min, the depth of cut was also changed from 0.3mm to 0.9mm, and etc. Cutting component force according to the coating layer number, and surface roughness were studied. The cutting component force showed a good agreement better the up ward direction than the down ward direction under all experimental conditions. In case of the condition per the material shape, it was lessen when the tool have larger angle because the average effective diameter of the tool is larger. The surface roughness showed good condition in case of the up ward than the down ward direction. And, in the 3rd layer of AlTiN coating, it showed the most suitable condition.

  • PDF