• 제목/요약/키워드: Double-cantilever beam

검색결과 121건 처리시간 0.026초

CZM(Cohesive Zone Model)을 이용한 철도차량용 직물 복합재의 모우드 I 층간파괴의 해석적 연구 (Finite Element Analysis and Validation for Mode I Interlaminar Fracture behavior of Woven Fabric Composite For a Train Carbody Using CZM(Cohesive Zone Model))

  • 김승철;김정석;윤혁진;서승일
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.239-246
    • /
    • 2009
  • The Mode I interlaminar fracture toughness of woven fabric carbon/epoxy and glass/epoxy composites for a train carbody was measured and FEM analysis was conducted. The woven fabric epoxy composite manufactured by hand lay-up, has high stiffness and strength, good resistance for impact, fatigue, corrosion and in-plane failure. The DCB(Double Cantilever Beam) specimen made of woven fabric epoxy composite had the size of 180mm $\times$ 25mm $\times$ 5mm and the insert of 65mm. The Mode I interlaminar toughness of specimen was measured according to ASTM 5528-01. The crack propagation behavior of the DCB specimen was simulated using FEA with cohesive elements that model the adhesive layer between woven fabric plies.

  • PDF

탄소섬유직물/에폭시 복합제의 모우드 I 층간파괴인성 평가 (Evaluation of Mode I Interlaminar Fracture Toughness for Carbon Fabric/Epoxy Composite)

  • 이은동;윤성호;신광복;정종철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.698-703
    • /
    • 2004
  • In this study, mode I interlaminar fracture phenomena of carbon fabric/epoxy composite for tilting train were investigated. Specimens were 25mm $\times$ 180mm $\times$ 4.7mm with an initial artificial delamination of 65mm at one end. This delamination with the thickness of 12.5$\mu$m and 25$\mu$m (teflon film) was used. Mode I interlaminar fracture toughness was measured using the double cantilever beam and the fractured surfaces were examined through a scanning electron microscope. The experimental results obtained in this study would be applicable in the design and structural analysis of the composite structures.

  • PDF

Linking bilinear traction law parameters to cohesive zone length for laminated composites and bonded joints

  • Li, Gang;Li, Chun
    • Advances in aircraft and spacecraft science
    • /
    • 제1권2호
    • /
    • pp.177-196
    • /
    • 2014
  • A theoretical exploration for determining the characteristic length of the cohesive zone for a double cantilever beam (DCB) specimen under mode I loading was conducted. Two traction-separation laws were studied: (i) a law with only a linear elastic stage from zero to full traction strength; and (ii) a bilinear traction law illustrating a progressive softening stage. Two analytical solutions were derived for the first law, which fit well into two existing solution groups. A transcendental equation was derived for the bilinear traction law, and a graphical method was presented to identify the resultant cohesive zone length. The study using the bilinear traction law enabled the theoretical investigation of the individual effects of cohesive law parameters (i.e., strength, stiffness, and fracture energy) on the cohesive zone length. Correlations between the theoretical and finite element (FE) results were assessed. Effects of traction law parameters on the cohesive zone length were discussed.

이종 접합부재의 두께 변화에 따른 계면균열의 초음파 산란 보정 (Ultrasonic Scatter and Compensation of Interfacial Crack due to Thickness Variation of Dissimilar Bonded Components)

  • 박성일;정남용;진윤호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.25-30
    • /
    • 2004
  • In this paper, the compensation of interfacial scatter due to adhesive layer and adherend thickness ratio variation was applied to improve measuring precision by calculating ultrasonic attenuation coefficient in the Al/Epoxy dissimilar bonded components. The optimum condition of theoretical value and experimental measuring accuracy by the ultrasonic method in the Al/Epoxy dissimilar bonded components have been investigated. From the experimental results, we proposed a measurement method of the interfacial crack lengths by the ultrasonic attenuation coefficient and discussed it.

  • PDF

Adhesion Strength Measurements of Cu-based Leadframe/EMC Interface

  • Lee, Ho-Young;Jin Yu
    • 마이크로전자및패키징학회지
    • /
    • 제6권2호
    • /
    • pp.1-12
    • /
    • 1999
  • Brown oxide and/or black oxide layers were formed on the surface of Cu-based leadframe by chemical oxidation of leadframe in hot alkaline solutions, and their growth characteristics were studied. Then, to measure the adhesion strength between leadframe and epoxy molding compound (EMC), oxidized leadframe samples were molded with EMC and machined to form sandwiched double-cantilever beam (SDCB) specimens and pull-out specimens, respectively. Results showed that the adhesion strength of un-oxidized leadframe/EMC interface was inherently very poor but could be increased drastically with the nucleation of acicular CuO precipitates on the surface of leadframe. The presence of smooth faceted $Cu_2O $ on the surfaces of leadframe gave close to zero interfacial fracture toughness (Gc) and reasonable pull strength (PS). A direct correlation between Gc and PS showed that PS can be a measure of Gc only in a limited range.

  • PDF

인장하중하에서의 고분자/거친금속 계면의 파손에 대한 비교연구 I: 실험결과 (Comparative Study on the Failure of Polymer/Roughened Metal Interfaces under Mode-I Loading I: Experimental Result)

  • 이호영;김성룡
    • 한국재료학회지
    • /
    • 제15권1호
    • /
    • pp.1-5
    • /
    • 2005
  • Copper-based leadframe sheets were immersed in two kinds of hot alkaline solutions to form brown-oxide or black-oxide layer on the surface. The oxide-coated leadframe sheets were molded with epoxy molding compound (EMC). After post mold curing, the oxide-coated EMC-leadframe joints were machined to form sandwiched double-cantilever beam (SDCB) specimens. The SDCB specimens were used to measure the fracture toughness of the EMC/leadframe interfaces under quasi-Mode I loading conditions. Fracture surfaces were analyzed by various equipment to investigate failure path. The present paper deals with the failure path, and the cause of the failure path formation with an adhesion model will be treated in the succeeding paper.

인장하중하에서의 고분자/거친금속 계면의 파손에 대한 비교연구 II: 접착모델 (Comparative Study on the Failure of Polymer/Roughened Metal Interfaces under Mode-I Loading II: Adhesion Model)

  • 이호영;김성룡
    • 한국재료학회지
    • /
    • 제15권1호
    • /
    • pp.6-13
    • /
    • 2005
  • Copper based leadframe sheets were immersed in two kinds of hot alkaline solutions to form brown-oxide or blackoxide layer on the surface. The oxide-coated leadframe sheets were molded with epoxy molding compound (EMC). After post mold curing, the oxide-coated EMC-leadframe joints were machined to form sandwiched double-cantilever beam (SDCB) specimens. The SDCB specimens were used to measure the fracture toughness of the EMC/leadframe interfaces under quasi-Mode I loading conditions. After fracture toughness testing, the fracture surface were analyzed by various equipment to investigate failure path. An adhesion model was suggested to explain the failure path formation. The adhesion model is based on the strengthening mechanism of fiber-reinforced composite. The present paper deals with the introduction of the adhesion model. The explanation of the failure path with the proposed adhesion model was introduced in the companion paper.

펄스-에코법을 이용한 접착접합 시험편의 정량적 비파괴 평가 (Quantitative Nondestructive Evaluation of Bonded Joints utilizing Pulse-Echo Ultrasonic Test)

  • 오승규;황영택;이원
    • 한국정밀공학회지
    • /
    • 제20권3호
    • /
    • pp.157-164
    • /
    • 2003
  • The pulse-echo method is one of the most widely used ultrasonic techniques for application of nondestructive evaluation. Particularly, quantitative nondestructive evaluation of defects has been considered more important to assure the reliability and the safety of structure. Frequency energy in adhesive joints is based on the ultrasonic wave analysis. The attenuation coefficient upon wave amplitude and the frequency energy that is expressed in the term of wave pressure amplitude were utilized for the primary wave experiment. By means of a control experiment, it was confirmed that the variation of the frequency energy in adhesive joints depends on transition by stress variation. In this paper, the ultrasonic characteristics were measured for single lap joint and Double Cantilever Beam specimen with different fracture modes that was subjected to stress. Consequently, the data that was obtained from the adhesive specimen was analytically compared to the fracture mechanics parameter

Determination of the Failure Paths of Leadframe/EMC Joints

  • Lee, H.Y.;Kim, S.R.
    • 한국표면공학회지
    • /
    • 제33권4호
    • /
    • pp.241-250
    • /
    • 2000
  • Popcorn cracking phenomena frequently occur in thin plastic packages during the solder reflow process, which are definitely affected by poor adhesion of Cu-based leadframe to epoxy molding compounds (EMCs). In the present work, in order to enhance the adhesion strength, a brown-oxide treatment on the Cu-based leadframe was carried out and the adhesion strength of leadframe/EMC interface was measured in terms of fracture toughness by using sandwiched double-cantilever beam (SDCB) specimens. After the adhesion tests, fracture surfaces were analyzed by SEM, AES, EDS and AFM to make the failure path clear. Results showed that failure path was closely related to the oxidation time and the interfacial fracture toughness.

  • PDF

Surface elasticity-based modeling and simulation for dynamic and sensing performances of nanomechanical resonators

  • Kilho Eom
    • Advances in nano research
    • /
    • 제14권3호
    • /
    • pp.285-294
    • /
    • 2023
  • The dynamic and sensing performances of nanomechanical resonators with their different boundary conditions are studied based on surface elasticity-based modeling and simulation. Specifically, the effect of surface stress is included in Euler-Bernoulli beam model for different boundary conditions. It is shown that the surface effect on the intrinsic elastic property of nanowire is independent of boundary conditions, while these boundary conditions affect the frequency behavior of nanowire resonator. The detection sensitivity of nanowire resonator is remarkably found to depend on the boundary conditions such that double-clamping boundary condition results in the higher mass sensitivity of the resonator in comparison with simple-support or cantilever boundary condition. Furthermore, we show that the frequency shift of nanowire resonator due to mass adsorption is determined by its length, whereas the frequency shift is almost independent of its thickness. This study enables a design principle providing an insight into how the dynamic and sensing performances of nanomechanical resonator is determined and tuned.