• Title/Summary/Keyword: Double stage

Search Result 550, Processing Time 0.021 seconds

Hybrid Group-Sequential Conditional-Bayes Approaches to the Double Sampling Plans

  • Seong-gon Ko
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.1
    • /
    • pp.107-120
    • /
    • 1998
  • This research aims here to develop a certain extended double sampling plan, EDS, which is an extension of ordinary double sampling plan in the sense that the second-stage sampling effort and second-stage critical value are allowed to depend on the point at which the first-stage continuation region is traversed. For purpose of comparison, single sampling plan, optimal ordinary double sampling plan(ODS) and sequential probability ratio test are considered with the same overall error rates, respectively. It is observed that the EDS idea allows less sampling effort than the optimal ODS.

  • PDF

Finite Element Vibration/Shock Analysis of Double Stage Elastic Mounting System with Viscoelastically Damped Foundation Structure (유한용소법을 이용한 점탄성 감쇠구조물이 포함된 2단 탄성마운트 시스템의 진동/충격응답 해석)

  • 정우진;류정수;배수룡;함일배
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.508-516
    • /
    • 2000
  • To study the possibility of F.E.M application to vibration and shock response of double stage elastic mounting system with complicated damped foundation structure like common-bed or raft in ships foundation structure model which has complicated damped sandwich cross-section is analyzed first. And then vibration responses experimental results and shock response of double stage elastic mounting system with complicated damped foundation structure like common-bed or raft in ships foundation structure model which adopts the above damped structure as intermediate foundation were compared. As a result it is found that F.E.M could be effectively used in analyzing the vibration and shock response of double and multi-stage elastic mounting system with complicated damped foundation structures.

  • PDF

Double-Pass Two-Stage EDFA with Gain-Flattening Filters

  • Sohn, Ik-Bu;Baek, Jang-Gi;Song, Jae-Won
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.64-66
    • /
    • 2003
  • The optical gain and noise figure improved double-pass two-stage EDFA using a mirror, circulator, and gain-flattening filters is proposed. By double passing the pump light and removing the ASE propagating into the input part, the signal gain of 5 ㏈ and noise figure of 2.1 ㏈ are improved compared to the conventional single- and double-pass EDFA With gain-fattening filters in the second stage of EDFA, we obtain an improved flat gain with a gain flatness less than 1 ㏈ over 33-nm wavelength range at the 980-nm pump power of 86 ㎽.

Response analysis of 6DOF fuselage model during taxiing for comparison of characteristics of single/double stage oleo-pneumatic shock absorber at nose (단-복동형 유.공압 완충장치의 전방장착특성 비교를 위한 6자유도 기체 모형의 지상 이동 응답해석)

  • Lee, Kook-Hee;Lee, Yoon-Kyu;Kim, Kwang-Joon;Lee, Sang-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.734-735
    • /
    • 2008
  • Shock absorber for rotorcraft landing gear should absorb landing impact during landing and isolate vibration to fuselage during taxiing. Double stage oleo-pneumatic shock absorber is known to have better performances than single stage oleo-pneumatic shock absorber. This paper deals with the z-direction translational acceleration at mass center, roil and pitch angular acceleration of fuselage for single and double stage oleo-pneumatic shock absorber at nose landing gear when a 6DOF rigid model is taxiing on the pound.

  • PDF

Adjusting Practical Aims in Optimal Extended Double Sampling Plans

  • Ko, Seoung-gon
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.1
    • /
    • pp.143-150
    • /
    • 1999
  • Ko(1998) proposed a procedure to enhance the efficiency of double sampling plans by allowing second-stage sample size and critical region to depend on first-stage evidence using constraint optimization approaches. In this study further developments of such plans by incorporating several practically possible researcher's aims into the optimization are considered. Comparisons are made with the optimal ordinary double sampling plan and also among them It is observed that it is to some extent possible to match the details of the optimization to certain qualitative methodological aims.

  • PDF

Estimation of Input Material Accounting Uncertainty With Double-Stage Homogenization in Pyroprocessing

  • Lee, Chaehun;Kim, Bong Young;Won, Byung-Hee;Seo, Hee;Park, Se-Hwan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • Pyroprocessing is a promising technology for managing spent nuclear fuel. The nuclear material accounting of feed material is a challenging issue in safeguarding pyroprocessing facilities. The input material in pyroprocessing is in a solid-state, unlike the solution state in an input accountability tank used in conventional wet-type reprocessing. To reduce the uncertainty of the input material accounting, a double-stage homogenization process is proposed in considering the process throughput, remote controllability, and remote maintenance of an engineering-scale pyroprocessing facility. This study tests two types of mixing equipment in the proposed double-stage homogenization process using surrogate materials. The expected heterogeneity and accounting uncertainty of Pu are calculated based on the surrogate test results. The heterogeneity of Pu was 0.584% obtained from Pressurized Water Reactor (PWR) spent fuel of 59 WGd/tU when the relative standard deviation of the mass ratio, tested from the surrogate powder, is 1%. The uncertainty of the Pu accounting can be lower than 1% when the uncertainty of the spent fuel mass charged into the first mixers is 2%, and the uncertainty of the first sampling mass is 5%.

A Two-Axis Ultra-precision Stage Using Flexure-type Parallel Linear Guide Mechanism (플렉셔 구조의 병렬형 선형 안내기구를 이용한 2 축 초정밀 스테이지)

  • Choi Kee-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.129-135
    • /
    • 2006
  • In this study, a two-axis ultra-precision stage driven by piezoelectric elements is presented. The stage has a flexure-type parallel linear guide mechanism consisting of quad-symmetric simple parallel linear springs and quad-symmetric double compound linear springs. While the simple parallel linear springs guide the linear motion of a moving plate in the stage, the double compound linear springs follow the motion of the simple parallel linear spring as well as compensate the parasitic motions caused by the simple parallel linear springs. The linear springs are designed by rectangular beam type flexures that are deformed by bending deflection rather than axial extension, because the axial extension is smaller than the bending deflection at the same force. The designed guide mechanism is analyzed by finite element method(FEM). Then two-axis parallel linear stage is implemented by the linear guide mechanism combined with piezoelectric elements and capacitance type displacement sensors. It is shown that the manufactured ultra-precision stage achieves 3 nm of resolution in x- and y-axis within 30 ${\mu}m$ of operating range.

Flow Patterns in a Spherical Vessel with Double-Stage Paddle Impeller (2단 패들 임펠러를 갖춘 구형교반조에서의 유동상태)

  • Lee, Young-Sei;Lee, Joon-Man
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.263-269
    • /
    • 2007
  • A numerical algorithm for three-dimension laminar flow in an agitated vessel was established by using the spherical coordinates. Flow pattern for the double-stage paddle impeller was not dependent upon the distance of among the impeller in the agitated vessels. The numerical simulation of the flow pattern in spherical and cylindrical agitated vessel agree well with the visualization results.

  • PDF

Power Consumption for Double-Stage Paddle Impeller in Cylindrical and Spherical Agitated Vessels (원통 및 구형교반조에서의 2단 Paddle 임펠러에 대한 소요동력)

  • Lee, Young-Sei;Choi, Hyun-Kuk;Shida, Hirotaka
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.4
    • /
    • pp.247-253
    • /
    • 2006
  • Power consumption for double-stage paddle impeller in spherical and cylindrical agitated vessel was measured over a wide range of Reynolds number from laminar to turbulent flow regions. The power correlation was obtained which was applied to both spherical and cylindrical vessel, when the apparent diameter of the spherical vessel was equal to the diameter of the cylindrical vessel which had a height equal to its diameter and had the same volume as the spherical vessel. The power consumption for the double-stage impeller was dependent upon the distance of among the impeller in the agitated vessels, as follows: $$f/2={\frac{C_L}{Re_G}}+{\frac{Ct}{2}}({\frac{C_tr}{Re_g}}+Re_g)^{-m}$$

  • PDF

Experimental damage identification of cantilever beam using double stage extended improved particle swarm optimization

  • Thakurdas Goswami;Partha Bhattacharya
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.591-606
    • /
    • 2024
  • This article proposes a new methodology for identifying beam damage based on changes in modal parameters using the Double Stage Extended Improved Particle Swarm Optimization (DSEIPSO) technique. A finite element code is first developed in MATLAB to model an ideal beam structure based on classical beam theory. An experimental study is then performed on a laboratory-scale beam, and the modal parameters are extracted. An improved version of the PSO algorithm is employed to update the finite element model based on the experimental measurements, representing the real structure and forming the baseline model for all further damage detection. Subsequently, structural damages are introduced in the experimental beam. The DSEIPSO algorithm is then utilized to optimize the objective function, formulated using the obtained mode shapes and the natural frequencies from the damaged and undamaged beams to identify the exact location and extent of the damage. Experimentally obtained resultsfrom a simple cantilever beam are used to validate the effectiveness of the proposed method. The illustrated results show the effectiveness of the proposed method for structural damage detection in the SHM field.